MTH 230 Study Guide - Midterm Guide: Prime Number, Divisibility Rule, Modular Arithmetic

51 views6 pages

Document Summary

This is a contradiction, so the theorem must be true. This means, there exists a positive integer greater than 1 that. A prime number is an integer (cid:1868)>(cid:883) that satisfies ((cid:1856) (cid:1868) & (cid:1856)>(cid:882)) (cid:4666)(cid:1856)=(cid:883)(cid:4667)(cid:1867)(cid:1870)(cid:4666)(cid:1856)=(cid:1868)(cid:4667) Suppose (cid:1868) is a prime number & (cid:1853),(cid:1854) are integers. Suppose (cid:1868) is a prime that divides (cid:1853)(cid:1854) (cid:271)ut does(cid:374)"t di(cid:448)ide (cid:1853). Since the only positive divisors of (cid:1868) are (cid:1868) & (cid:883) by definition of prime, gcd(cid:4666)(cid:1853),(cid:1868)(cid:4667)=(cid:883). A product of primes can be one or more prime numbers. i. e. , 3 is a product of primes & (cid:884)(cid:2870)(cid:885)(cid:2869)(cid:2868) is. Every positive integer (cid:1866)>(cid:883) is a product of primes. (cid:272)a(cid:374)"t (cid:271)e e(cid:454)p(cid:396)essed as a p(cid:396)odu(cid:272)t of p(cid:396)i(cid:373)es. Let (cid:1865) be the smallest such positive integer greater than 1 that can"t be expressed as a product of primes. This (cid:1865) (cid:272)a(cid:374)"t (cid:271)e a p(cid:396)i(cid:373)e, so (cid:1865) has a positive divisor (cid:1853) such that (cid:883)

Get access

Grade+
$40 USD/m
Billed monthly
Grade+
Homework Help
Study Guides
Textbook Solutions
Class Notes
Textbook Notes
Booster Class
10 Verified Answers

Related Documents

Related Questions