# All Educational Materials for Ben Miquel

## Popular Study Guides

CU-BOULDERAPPM 1350AllSummer

## appm1350summer2017exam3_0

OC25402942 Page
31 Jan 2019
0
View Document
CU-BOULDERAPPM 1350AllSpring

## appm1350spring2016exam2

OC25402942 Page
31 Jan 2019
0
Instructions: books, notes, and electronic devices are not permitted. Write (1) your name, (2) 1350/exam 2, (3) lecture number/instructor name and (4)
View Document
CU-BOULDERAPPM 1350AllFall

## appm1350fall2016exam1_sol

OC25402944 Page
31 Jan 2019
0
Explain how each x-value fails to satisfy the de nition of continuity. Be speci c and provide details in your answer. Solution: (a) (2 pts) 2 (b) (2 pt
View Document
CU-BOULDERAPPM 1350AllSpring

## appm1350spring2013exam2_sol

OC25402944 Page
31 Jan 2019
0
Spring 2013 (b) on what intervals is f increasing? decreasing: (15 points) (a) find the linearization of f (x) = 4 1 x at x = 0. (b) use the linearizat
View Document
CU-BOULDERAPPM 1350AllFall

## archive_appm1350fall2018exam1_sol

OC25402944 Page
31 Jan 2019
0
Hw 1 #1) (c) you see a bear cub in a tree on campus. Your distance from the tree is 100 ft. The angle between the ground and a straight line from your
View Document
CU-BOULDERAPPM 1350AllSpring

## appm1350spring2018examfinal_sol

OC25402944 Page
31 Jan 2019
0
Spring 2018: (a)(13pts) (i) what is the domain of g(x) = Give your answer in interval notation. (ii) find all horizontal asymptotes of g(x), justify yo
View Document
CU-BOULDERAPPM 1350AllSpring

## appm1350spring2017exam2

OC25402942 Page
31 Jan 2019
0
Instructions: books, notes, and electronic devices are not permitted. Write (1) your full name, (2) 1350/exam 2, (3) lecture number/instructor name and
View Document
CU-BOULDERAPPM 1350AllSpring

## appm1350spring2017exam1_sol

OC25402943 Page
31 Jan 2019
0
Spring 2017: (30 pts) consider the function f (x) = 6x + 1 5 x 4 (a)(10 pts) give the domain of the function y = 1/f (x) in interval notation. (b)(10 p
View Document
CU-BOULDERAPPM 1350AllFall

## appm1350fall2017exam4

OC25402942 Page
31 Jan 2019
0
View Document
CU-BOULDERAPPM 1350AllFall

## appm1350fall2017exam2_sol

OC25402944 Page
31 Jan 2019
0
Fall 2017: (28 pts) the following problems are not related. (a) let y = cos4(cid:0)3u2(cid:1). Find dy/du. (b) let x y + 4 = y2 42. Find dy/dx at the p
View Document
View all (100+)

## Trending

Frequently-seen exam questions from 2014 - 2018.
CU-BOULDERAPPM 1350AllSummer

## appm1350summer2017exam3_0

OC25402942 Page
31 Jan 2019
0
View Document
CU-BOULDERAPPM 1350AllSpring

## appm1350spring2016exam2

OC25402942 Page
31 Jan 2019
0
Instructions: books, notes, and electronic devices are not permitted. Write (1) your name, (2) 1350/exam 2, (3) lecture number/instructor name and (4)
View Document
CU-BOULDERAPPM 1350AllFall

## appm1350fall2016exam1_sol

OC25402944 Page
31 Jan 2019
0
Explain how each x-value fails to satisfy the de nition of continuity. Be speci c and provide details in your answer. Solution: (a) (2 pts) 2 (b) (2 pt
View Document
CU-BOULDERAPPM 1350AllSpring

## appm1350spring2013exam2_sol

OC25402944 Page
31 Jan 2019
0
Spring 2013 (b) on what intervals is f increasing? decreasing: (15 points) (a) find the linearization of f (x) = 4 1 x at x = 0. (b) use the linearizat
View Document
CU-BOULDERAPPM 1350AllFall

## archive_appm1350fall2018exam1_sol

OC25402944 Page
31 Jan 2019
0
Hw 1 #1) (c) you see a bear cub in a tree on campus. Your distance from the tree is 100 ft. The angle between the ground and a straight line from your
View Document
CU-BOULDERAPPM 1350AllSpring

## appm1350spring2018examfinal_sol

OC25402944 Page
31 Jan 2019
0
Spring 2018: (a)(13pts) (i) what is the domain of g(x) = Give your answer in interval notation. (ii) find all horizontal asymptotes of g(x), justify yo
View Document
CU-BOULDERAPPM 1350AllSpring

## appm1350spring2017exam2

OC25402942 Page
31 Jan 2019
0
Instructions: books, notes, and electronic devices are not permitted. Write (1) your full name, (2) 1350/exam 2, (3) lecture number/instructor name and
View Document
CU-BOULDERAPPM 1350AllSpring

## appm1350spring2017exam1_sol

OC25402943 Page
31 Jan 2019
0
Spring 2017: (30 pts) consider the function f (x) = 6x + 1 5 x 4 (a)(10 pts) give the domain of the function y = 1/f (x) in interval notation. (b)(10 p
View Document
CU-BOULDERAPPM 1350AllFall

## appm1350fall2017exam4

OC25402942 Page
31 Jan 2019
0
View Document
CU-BOULDERAPPM 1350AllFall

## appm1350fall2017exam2_sol

OC25402944 Page
31 Jan 2019
0
Fall 2017: (28 pts) the following problems are not related. (a) let y = cos4(cid:0)3u2(cid:1). Find dy/du. (b) let x y + 4 = y2 42. Find dy/dx at the p
View Document

## Popular Class Notes

CU-BOULDERAPPM 1350Ben MiquelFall

## APPM 1350 Lecture 18: APPM Lecture 10/2 Notes

OC5446862 Page
3 Oct 2015
70
View Document
CU-BOULDERAPPM 1350lylesFall

## APPM 1350 Lecture 2: APPM 1350 section 1.2

OC25131953 Page
1 Sep 2018
0
View Document
CU-BOULDERAPPM 1350Ben MiquelFall

## APPM 1350 Lecture 15: APPM Lecture 9/25 Notes

OC5446862 Page
3 Oct 2015
27
View Document
CU-BOULDERAPPM 1350Ben MiquelFall

## APPM 1350 Lecture 17: APPM Recitation 9/29 & Lecture 9/30 Notes

OC5446864 Page
3 Oct 2015
37
View Document
CU-BOULDERAPPM 1350Ben MiquelFall

## APPM 1350 Lecture Notes - Lecture 13: V Speeds

OC5446863 Page
23 Sep 2015
33
View Document
CU-BOULDERAPPM 1350Ben MiquelFall

## APPM 1350 Lecture 16: APPM Lecture 9/28 Notes

OC5446862 Page
3 Oct 2015
33
View Document
CU-BOULDERAPPM 1350lylesFall

OC25131952 Page
30 Aug 2018
0
View Document
View all (7+)

## Most Popular

CU-BOULDERAPPM 1350Ben MiquelFall

## APPM 1350 Lecture 18: APPM Lecture 10/2 Notes

OC5446862 Page
3 Oct 2015
70
View Document
CU-BOULDERAPPM 1350Ben MiquelFall

## APPM 1350 Study Guide - Midterm Guide: Rad Man, Lio, Ico

OC54468626 Page
21 Sep 2015
53
View Document
CU-BOULDERAPPM 1350lylesFall

## APPM 1350 Lecture 2: APPM 1350 section 1.2

OC25131953 Page
1 Sep 2018
0
View Document
CU-BOULDERAPPM 1350Ben MiquelFall

## APPM 1350 Lecture 15: APPM Lecture 9/25 Notes

OC5446862 Page
3 Oct 2015
27
View Document
CU-BOULDERAPPM 1350Ben MiquelFall

## APPM 1350 Lecture 17: APPM Recitation 9/29 & Lecture 9/30 Notes

OC5446864 Page
3 Oct 2015
37
View Document
CU-BOULDERAPPM 1350Ben MiquelFall

## APPM 1350 Lecture Notes - Lecture 13: V Speeds

OC5446863 Page
23 Sep 2015
33
View Document
CU-BOULDERAPPM 1350Ben MiquelFall

## APPM 1350 Lecture 16: APPM Lecture 9/28 Notes

OC5446862 Page
3 Oct 2015
33
View Document
CU-BOULDERAPPM 1350lylesFall

## APPM 1350 Lecture 1: APPM 1350 section 1.1

OC25131952 Page
30 Aug 2018
0
View Document
CU-BOULDERAPPM 1350AllSummer

## archive_appm1350summer2018examfinal_sol

OC25402944 Page
31 Jan 2019
0
Summer 2018: [30 pts] let f (x) = ex. 4 ex (a) find all asymptotes, if any, of the graph of f (x). Full justi cation requires the appropriate use of li
View Document
CU-BOULDERAPPM 1350AllFall

OC25402942 Page
31 Jan 2019
0
View Document

## Most Recent

CU-BOULDERAPPM 1350AllFall

## examf_f15_1350_solutions

OC25402946 Page
31 Jan 2019
0
Fall 2015: evaluate the following limits. (a) (6 pts) lim. /2 sin(3 ) (c) (6 pts) lim x 0|x| cos(1/x) (b) (6 pts) lim x /4. 1 tan x sin x cos x (d) (8
View Document
CU-BOULDERAPPM 1350AllFall

## examf_f15_1350

OC25402942 Page
31 Jan 2019
0
View Document
CU-BOULDERAPPM 1350AllSummer

## archive_appm1350summer2018examfinal_sol

OC25402944 Page
31 Jan 2019
0
Summer 2018: [30 pts] let f (x) = ex. 4 ex (a) find all asymptotes, if any, of the graph of f (x). Full justi cation requires the appropriate use of li
View Document
CU-BOULDERAPPM 1350AllSummer

## archive_appm1350summer2018examfinal

OC25402941 Page
31 Jan 2019
0
View Document
CU-BOULDERAPPM 1350AllSummer

## archive_appm1350summer2018exam3_sol

OC25402945 Page
31 Jan 2019
0
Write your answer using interval notation. (k) [3 pts] find all in ection points of f (x), if it pos- (f) [2 pts] find f (x). Check your answer very ca
View Document
CU-BOULDERAPPM 1350AllSummer

## archive_appm1350summer2018exam3

OC25402942 Page
31 Jan 2019
0
View Document
CU-BOULDERAPPM 1350AllSummer

## archive_appm1350summer2018exam2_sol

OC25402944 Page
31 Jan 2019
0
Summer 2018: [30 pts] for the given function, nd the indicated derivative. Simplify your nal answers, writing them without negative exponents: p(t) = S
View Document
CU-BOULDERAPPM 1350AllSummer

## archive_appm1350summer2018exam2

OC25402941 Page
31 Jan 2019
0
View Document
CU-BOULDERAPPM 1350AllSummer

## archive_appm1350summer2018exam1_sol

OC25402944 Page
31 Jan 2019
0
Summer 2018: let f (x) = 2 + Justify your answer using limits. (c) [9 pts] find the asymptotes of f . 2 2x (x 1)(x 4) The denominator vanishes if x = 1
View Document
CU-BOULDERAPPM 1350AllSummer

OC25402942 Page
31 Jan 2019
0