Class Notes (1,032,923)
CA (591,810)
BCIT (118)
ECON (56)
1000 (51)
simo (3)
Lecture 1

1000 Lecture 1: All math 1

24 pages88 viewsSummer 2017

Department
Economics
Course Code
1000
Professor
simo
Lecture
1

This preview shows pages 1-3. to view the full 24 pages of the document.
www.nafham.com
if y=logax then x=ay
xlog
b
x=b
logaa=1
logaax
( )
=x
alog
a
x=x
logaMN
( )
=logaM+logaN
logaMp
( )
=PlogaM
logaM
N
=logaMlogaN
a
M
N
=a
n
M
Sx=xa+bi
( )
[ ]
xabi
( )
[ ]
=x22ax +a2+b2
( )
cos2x+sin2x=1
sin 2
( )
=2sin
( )
cos
( )
cos 2
( )
=cos2sin2
cos 2
( )
=12sin2
cos 2
( )
=2cos
21
sin 2
= ± 1cos
2
cos 2
= ± 1+cos
2
tan 2
( )
=2tan
1tan2
tan 2
=1cos
sin =sin
1+cos
logax=ln x
ln a
sin +sin =2 sin +
2cos
2
sin sin =2 cos +
2sin
2
cos +cos =2 cos +
2cos
2
cos cos =2 sin +
2sin
2
sin +
( )
=sin cos +cos sin sin
( )
=sin cos cos sin
cos +
( )
=cos cos sin sincos
( )
=cos cos +sin sin
ax
2
+bx +c=0
x=b±b
2
4ac
2a
Page 1
Math Reference Trigonometry & Analysis James Lamberg
cos π
2+x
= sin x
cos π
2x
=sin x
cos π ± x
( )
= cos x
cos 3π
2+x
=sin x
cos 3π
2x
= sin x
sin π
2±x
=cos x
sin π + x
( )
= sin x
sin π − x
( )
=sin x
sin 3π
2±x
= cos x
tan π
2+x
= cot x
tan π
2x
=cot x
tan π+x
( )
=tan x
tan π−x
( )
= tan x
tan 3π
2+x
= cot x
tan 3π
2x
=cot x
for every
element of
there exists
such that
therefore
Q since
¬ not
and
or
d derive
integrate
x=a evaluate with x =a
proportional to
p precedes
f follows
congruent to
union
intersection
subset
superset
proper subset
propor superset
C (fancy) compliment
implies
double implication
~ negation or ¬
( )
Q.E.D: Quod Erat Demonstandum
"that which was to be proved"
tan
( )
=tan tan
1+tan tan
tan +
( )
=tan +tan
1tan tan
Mid =x
2
x
1
2,y
2
y
1
2
Dist =x
2
x
1
( )
2
+y
2
y
1
( )
2
A = 1
2r2, sector area
You're Reading a Preview

Unlock to view full version

Only half of the first page are available for preview. Some parts have been intentionally blurred.

www.nafham.com
c2=a2+b22ab cos
b2=a2+c22ac cos
a2=b2+c22bc cos
sin
a=sin
b=sin
c
K=1
2bc sin
y=Asin x -
( )
+K, > 0
Amplitude = A=Mm
2
Period = 2π
Phase Shift =
Frequency = 1
period =2π
Critical Points = period
4
Unit Circle
cos, sin
( )
0,0°=1,0
( )
π
6,30
°=3
2,1
2
π
4,45
°=2
2,2
2
π
3,60
°=1
2,3
2
π
2,90
°=0,1
( )
2π
3,120°= 1
2,3
2
3π
4,135°=−2
2,2
2
5π
6,150°=−3
2,1
2
π,180
°= −1,0
( )
7π
6,210
°=−3
2,1
2
5π
4,225
°=−2
2,2
2
4π
3,240
°= 1
2,3
2
3π
4,270
°=0, 1
( )
5π
3,300
°=1
2,3
2
11π
6,330
°=3
2,1
2
Page 2
\Math Reference Trigonometry & Analysis James Lamberg
You're Reading a Preview

Unlock to view full version

Only half of the first page are available for preview. Some parts have been intentionally blurred.

www.nafham.com
ab =ab
a2=a
a
b=a
b
an=an
if a<b&b<c, then a<c
if a<b&c<d, then a+c<b+d
if a<b then a+k<b+k
if a<b&k>0, then ak <bk
if a
<b&k<0, then ak >bk
a+ba+b
¯aaa
ak iff ¯k ak
ak iff a-k of a k
xo
limsin x
x=1
xo
lim1cos x
x=0
xc
lim
f x
( )
f c
( )
x
c
d
dx x
n
=nx
n1
d
dx C=0
d
dx tanx=sec
2
x
d
dx sin x=cos x
d
dx cos x=¯sin x
d
dx cot x=¯csc
2
x
d
dx sec x=sec xtan x
f t
( )
=1
2gt
2
+v
0
t+s
0
v t
( )
=f't
( )
a t
( )
=v't
( )
=f"t
( )
d
dx csc x=¯csc xcot x
d
dx f x
( )
g x
( )
( )
=f x
( )
g'x
( )
+g x
( )
f'x
( )
d
dx u=u'u
u,u0
Profit = Revenue -Cost=SoldPrice -Cost
Critical # when f'x
( )
=0 or f' x
( )
DNE
f x
( )
increasing if f'x
( )
>0
f x
( )
decreasing if f'x
( )
<0
MVT, f'c
( )
=f b
( )
f a
( )
baon a,b
[ ]
IPs if f"x
( )
=0 and f"x
( )
changes sign
ydy =f'x
( )
dx
f x
( )
concave down on a,b
( )
if f'x
( )
is DEC x in a,b
[ ]
, f"x
( )
<0
f x
( )
concave up on a,b
( )
if f'x
( )
is INC x in a,b
[ ]
, f"x
( )
>0
d
dx f x
( )
dx
( )
=f x
( )
k
( )
dx =kx +C
x
n
( )
dx =xn+1
n+1+C
TrapRule
f x
( )
dx ba
2n
a
b
f a
( )
+f b
( )
+2f x
1
( )
+f x
2
( )
+... +f x
n
( )
( )
( )
Euler' s Method
Start @ x,y f' x,y
( )
→ ∆x→ ∆y = xf' x,y
( )
Use y for change in next y
kf'x
( )
( )
dx =kf x
( )
+C
f'x
( )
±g'x
( )
( )
dx =f x
( )
±g x
( )
0
( )
dx =C
sec2x
( )
( )
dx =tan x
( )
+C
csc2x
( )
( )
dx =Ccot x
( )
sec x
( )
tan x
( )
( )
dx =sec x
( )
+C
csc x
( )
cot x
( )
( )
dx =Ccsc x
( )
c
i=1
n
=cn
i
i=1
n
=n n +1
( )
2
i
2
i=1
n
=n n +1
( )
2n+1
( )
6
i3
i=1
n
=n2n+1
( )
2
4
cos x
( )
( )
dx =sin x
( )
+C
sin x
( )
( )
dx =Ccos x
( )
x→∞
lim f ci
( )
i=1
n
⋅ ∆x,xiacixi,x=ba
n
f x
( )
dx
a
a
=0
f x
( )
b
a
dx = − f x
( )
a
b
dx
f x
( )
a
b
dx =f x
( )
a
c
dx +f x
( )
c
b
dx
kf x
( )
a
b
dx =k f x
( )
a
b
dx
f x
( )
±g x
( )
a
b
dx =f x
( )
a
b
dx ±g x
( )
a
b
dx
f x
( )
a
b
dx =F b
( )
F a
( )
,F'x
( )
=f x
( )
F'x
( )
=d
dx f t
( )
a
x
=f x
( )
If f is even, f x
( )
-a
a
dx =2 f x
( )
0
a
dx
Average Value of a
Function : 1
b-af x
( )
dx
a
b
If f is odd, f x
( )
-a
a
dx =0
d
dx
f x
( )
g x
( )
=g x
( )
f'x
( )
f x
( )
g'x
( )
g x
( )
( )
2
Math Reference Calculus James Lamberg
Page 1
You're Reading a Preview

Unlock to view full version


Loved by over 2.2 million students

Over 90% improved by at least one letter grade.