Class Notes (807,304)
Mathematics (337)
MATH 2004 (14)
Lecture

# Multivariable Calculus Notes

4 Pages
266 Views

School
Carleton University
Department
Mathematics
Course
MATH 2004
Professor
Xinhou Hua
Semester
Fall

Description
MATH2004 Calculus Exam Notes Periodicity: f (x) p>0 f (x+p)=f (x) is periodic if there is such that , the x interval along over which a fourier series acts before being repeated. a =0 a =0 f (x)is odd iff (−x)=−f (x), eg, sin(kx) → 0 , n f (x)is even iff (−x)=f (x) , eg,cos⁡(kx) → Fourier Sine coefficient, b(n), becomes zero Fourier Series: Associates a given function with a repeating sine & cosine function described by: a ¿ nπx nπx [¿ncos( L +bnsin( L ¿] ¿ a ∞ f x = 0+∑ ¿ 2 n=1 1 L nπx 1 L nπx an=L ∫ f (x)co( L dx bn= L∫ f (x)si( L dx −L −L 1 L a0= ∫ f (x)dx L −L ∞ L a0 nπx 2 nπx Fourier Cosine Series: f (x)=2 +n=1ancos( L an= L∫ f (x)co( )L dx 0 a ∞ L f (x)=0+ ∑ b nin nπx bn= 2∫ f (x)sinnπx dx Fourier Sine Series: 2 n=1 ( L L 0 ( L Lines & Planes: Lines: MATH2004 • Vector form: x(t)=́p+t v , where p=(p ,1p 2p )3 , x(t)=(x, y,z) • Parametric form: x=p +1 v 1 , y=p +2 v 2 , z=p +t v 3 3 • Lines are parallel if they have a common multiplier Planes: (x−́p)∙́=0 x=(x, y,z) • Point-normal form: , where Distance between a point, P(p 1p 2p )3 and a plane, ax+by+cz=d : ¿a p1+bp +2 p −3∨ ¿ √ a +b +c 2 D=¿ ¿r'(t)∨¿ Tangent vector: r'(t) T= ¿ ́' ¿T ∨¿ Unit normal vector: N= T' ¿ B=T× N ́ Birnormal vector: Parametric Equations: dy d (y ) dy dt d y dt dt First & Second Derivative: = 2= dx dx d x dx
More Less

Related notes for MATH 2004

OR

Don't have an account?

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Join to view

OR

By registering, I agree to the Terms and Privacy Policies
Just a few more details

So we can recommend you notes for your school.