EPSC 201 Lecture Notes - Lecture 18: Graben, Tral, True North

17 views9 pages
EPSC201 Lecture 18 Notes
Metamorphic facies – if we look at plot of pressure vs temperature, then we can define these domains
with different names. For example, we define an area on the graph called greenchist with tempera-
tures around 400 and 7atm pressure. These domains contain specific types of rocks, which can be
identified and give hints to what the conditions
of the environment were.
Greenschist facies is green because of chlorite,
a dominant mineral in the domain.
Amphibolite facies has lots of amphibole mineral
in it.
Shales contain a series of other minerals, due to
recrystallization, which changes the mineral
content.
The benefit of using this chart is that identifica-
tion can be done right in the field by a geologist,
with no lab analysis. The rocks tell what type of
geological environment the local rocks form. If
there was a subduction zone present long ago,
you can identify it by the rock types. The sub-
ducting plate is coming from the surface, so its
going to be relatively low temperature. Rocks
are great insulators, so it starts at the surface cold, and stays cold for a long time. Above the sub-
ducting slab, the temperatures would be higher. So there will be a juxtaposition of facies, due to the
higher temperature of the above plate.
There might be blueschist facies on the
subducting plate, and then on the conti-
nental crust, it will change to greenschist,
due to the increase in temperature.
If erosion occurs on the surface, some
time later, we can see rocks that used to
be underground. These rocks exhibit
these nice trends, were changes in tem-
perature are reflected by observing nice
shifts between different facies.
Paired metamorphic belts – juxtaposed
facies are called metamorphic belts be-
cause they are found next to each other.
Unlock document

This preview shows pages 1-3 of the document.
Unlock all 9 pages and 3 million more documents.

Already have an account? Log in
Profile three is continental collision, which
is shown below. This is the type of colli-
sion that is forming the Himalaya moun-
tains right now. Notice the isotherms un-
der young mountains. Under these moun-
tains, it is warmer. It is also warmer under
the active rift.
A rifting environment would have a much
flatter path on the metamorphic facies.
The number 2 path would reflect this. The
rifting environment heats the plates, but
doesn’t add any pressure to the environ-
ment. The bottom line is that by looking at
the sequence of facies of rock, you can tell
what type of environment the plates are in.
Continent-continent collision = path 3 – greenschist to amphibolite
Subduction zone = path 5 – blue schist in subduction plate, greenschist in top plate, increase in pres-
sure
Continental rift – path 2 – increase in temperature
without increase in pressure, may even take path
1
This type of work is called petrology, which in-
volves identifying rocks and drawing conclusions
of what type of environment was present.
Note the hornfels facies. This is only an in-
crease in temperature, and no increase in pres-
sure. This is because the igneous intrusion caus-
es an increase in temperature, but the rocks stay
at the same depth. This is shown in path 1.
The green rocks represent low-grade metamor-
phic rocks, and the purple represents high-grade
metamorphic rocks. As you move inland, the
metamorphic grade goes down.
What does this tell us?
Unlock document

This preview shows pages 1-3 of the document.
Unlock all 9 pages and 3 million more documents.

Already have an account? Log in
High grade means high temperature and pressure. Low grade means low temperature and pressure.
This area is relatively flat. There is definite symmetry in this structure. It is not terribly complex. As
the rock layers get folded, the edges expose younger rocks. Higher-grade metamorphic rock must
have been deeper and for longer, so it will be older.
Here we have a U-shaped curve. It looks like the fold is dipping towards the North. There may have
been two episodes of folding at the top, because the lines are not very clean. The metamorphic map-
ping is giving a really good image of the past mountains and folding.
Anticline - an anticline is a fold that is convex up and has its oldest beds at its core. The term is not to
be confused with antiform, which is a purely descriptive term for any fold that is convex up.
On a geologic map, anticlines are usually recognized by a sequence of rock layers that are progres-
sively older toward the center of the fold because the uplifted core of the fold is preferentially eroded
to a deeper stratigraphic level relative to the topographically lower flanks.
So on our map, the purple zone is the oldest, and from the layer of the Earth, while the green layer is
the youngest.
Unlock document

This preview shows pages 1-3 of the document.
Unlock all 9 pages and 3 million more documents.

Already have an account? Log in

Document Summary

Metamorphic facies if we look at plot of pressure vs temperature, then we can define these domains with different names. For example, we define an area on the graph called greenchist with tempera- tures around 400 and 7atm pressure. These domains contain specific types of rocks, which can be identified and give hints to what the conditions of the environment were. Greenschist facies is green because of chlorite, a dominant mineral in the domain. Amphibolite facies has lots of amphibole mineral in it. Shales contain a series of other minerals, due to recrystallization, which changes the mineral content. The benefit of using this chart is that identifica- tion can be done right in the field by a geologist, with no lab analysis. The rocks tell what type of geological environment the local rocks form. If there was a subduction zone present long ago, you can identify it by the rock types.

Get access

Grade+
$10 USD/m
Billed $120 USD annually
Homework Help
Class Notes
Textbook Notes
40 Verified Answers
Study Guides
Booster Classes
Class+
$8 USD/m
Billed $96 USD annually
Homework Help
Class Notes
Textbook Notes
30 Verified Answers
Study Guides
Booster Classes