PSYC 494N1 Lecture Notes - Retinal Ganglion Cell, Optic Chiasm, Lateral Geniculate Nucleus

35 views5 pages
5 Feb 2013
The neural pathway leaving the eyes starting with the optic nerve.
The Optic Nerve, Optic Chiasm, and Optic Tract
The ganglion cell axons leaving the retina pass through three structures before forming
synapses in the brain stem (see Fig. 10.2):
o Optic nerve
o Optic chiasm
o Optic tract
The optic nerves exit the left and right eyes at the optic disks and combine to form the
optic chiasm. Here the axons originating in the nasal retinas cross from one side to the
other and this is called decussation (i.e. the crossing of a fiber bundle from one side of
the brain to the other). In this case the decussation is partial and following this crossing,
the axons of the retinofugal projections form the optic tracts.
Right and Left Visual Hemifields
Left visual hemifield: objects appearing to the left of the midline
Right visual hemifield: objects appearing to the right of the midline (see Fig. 10.3).
The central portion of both visual hemifields is viewed by both retinas and this region of space is
the binocular visual field. Objects in the binocular region of the left visual hemifield will be
imaged on the nasal retina of the left eye and on the temporal region of the right eye.
Rule of Thumb: optic nerve fibers cross in the optic chiasm so that the left visual
hemifield is” viewed” by the right hemisphere and the right visual hemifield is “viewed” by
the left hemisphere.
Targets of the Optic Tract
A small number of optic tract axons peel off to form synaptic connections with cells in the
hypothalamus and another 10% innervate the midbrain. Most innervate the lateral geniculate
nucleus (LGN) of the dorsal thalamus and these neurons give rise to axons projecting to the
primary visual cortex. This projection is called the optic radiation. Lesions in these areas will
cause blindness.
See Fig. 10.5:
A transaction of the left optic nerve would lead to blindness at the left eye only.
A transaction of the left optic tract would lead to blindness at the right visual field.
A midline transaction of the optic chiasm would affect only the fibers that cross the
midline; blindness would result in the peripheral visual fields on both sides.
Nonthalamic Targets of the Optic Tract
Direct projections to part of the hypothalamus play an important role in synchronizing biological
rhythms with the daily dark-light cycle.
Direct projections to part of the midbrain the pretectum control the size of the pupil and
certain eye movements.
Unlock document

This preview shows pages 1-2 of the document.
Unlock all 5 pages and 3 million more documents.

Already have an account? Log in
10% of the ganglion cells project to the superior colliculus and these projections are
called the retinotectal projection.
o In the superior colliculus, a patch of neurons activated by a point of light commands eye
and head movements to bring the image of this point onto the fovea.
o Involve in orienting the eyes in response to new stimuli in the visual periphery
The right and left lateral geniculate nuclei are the major targets of the two optic tracts and each
LGN appears to be arranged in six distinct layers of cells numbered 1 through 6 (see Fig. 10.7).
The most ventral layer is layer 1. The layers of the LGN are stacked one on top of another and
are bent around the optic tract. The LGN is the gateway to the visual cortex and to conscious
visual perception.
The Segregation of Input by Eye and Ganglion Cell Type
The segregation of LGN neurons into layers suggests that different types of retinal information
are being kept separate.
At the LGN, input from the two eyes is kept separate.
o In the right LGN, the right eye (ipsilateral) axons synapse on LGN cells in layers 2, 3, and
5. The left eye (contralateral) axons synapse on cells in layers 1, 4, and 6 (see Fig. 10.8).
Two ventral layers, 1 and 2, contain larger neurons than the other layers, 3 through 6. The
ventral layers are thus called magnocellular LGN layers and the dorsal layers are called
parvocellular LGN layers.
P-type ganglion cells project exclusively to the parvocellular LGN
M-type ganglion cells project entirely to the magnocellular LGN.
Numerous tiny neurons also lie just ventral to each layer called the koniocellular layers. These
layers receive input from nonM-nonP types of retinal ganglion cells and also project to visual
cortex (see Fig. 10.9).
Receptive Fields
The visual receptive fields of LGN neurons are almost identical to those ganglion cells that feed
Magnocellular LGN neurons have large center-surround receptive fields which respond
to stimulation of their field centers with bursts of action potential. They are insensitive to
differences in wavelength and are most similar to M-type ganglion cells.
Parvocellular LGN cells are most like P-type cells. They have small center-surround
receptive fields and their responses are sustained increases in the frequency of action
potentials. Many of these cells exhibit colour opponency.
Receptive fields of cells in the koniocellular layers are center-surround and have either
light/dark or color opponency.
Within all layers of the LGN, the neurons are activated by only one eye (i.e. monocular) and ON-
center and OFF-center cells are intermixed.
Nonretinal Inputs to the LGN
Unlock document

This preview shows pages 1-2 of the document.
Unlock all 5 pages and 3 million more documents.

Already have an account? Log in

Get OneClass Notes+

Unlimited access to class notes and textbook notes.

YearlyBest Value
75% OFF
$8 USD/m
$30 USD/m
You will be charged $96 USD upfront and auto renewed at the end of each cycle. You may cancel anytime under Payment Settings. For more information, see our Terms and Privacy.
Payments are encrypted using 256-bit SSL. Powered by Stripe.