Class Notes (834,799)
Canada (508,727)
QMS 102 (186)
Amy Peng (3)
Lecture

Session-2 (2)- Statistics.docx

14 Pages
155 Views
Unlock Document

Department
Quantitative Methods
Course
QMS 102
Professor
Amy Peng
Semester
Winter

Description
Business Statistics I Dr. Changping Wang 2. Frequency Distribution lass Frequency, f • A table that shows classes or intervals of data with a count of the  number of entries in each class. • The frequency, f, is the number of data entries in the class. For example,  Class Frequency, f 1 and under 5                   5   5   and under 10                   8     10 and under 15                   6     15 under and 20                   8     20 and under 25                   5     25 and under 30                   4 Lower boundaries: 0, 5, 10, …, 25 Upper boundaries: 5,10,15,…,30 Class width:  5   Some guidelines for the following selection. Number of classes:  5~10 classes; Notation for indicating classes:  In this text, “and under” is used.  You may choose to use “to”, say, 0 to 5. You may use “0­5” or “0~5”. Class width (CW):  CW=Upper boundary­Lower boundary; Unless one has a special reason for doing so, o/w, it is best  that the class  width be an “easy” number to work with. Recommended class widths are 1,  2,  2.5  (if the data has at least one decimal) 5, 10, 20, 25, 50, 100, 200, 250, etc. 0.1, 0.2, 0.25 (if the data has at least 2 decimals) Session 2 Page 1 Business Statistics I Dr. Changping Wang For narrower classes                                For wider  classes Dividing by  10                                        Multiplying by 10    0.01              0.1                           1               10         100    0.02              0.2                           2               20         200    0.025            0.25                         2.5            25         250    0.05              0.5                           5               50         500 Note: In this course, when you are asked to construct a  frequency distribution, all classes must have the same  class width. Boundaries:  1) They should look like the data; i.e., have the same number of  decimal places as the original data. 2) Each boundary should be a multiple of the class width. 3) There must be no gaps between classes; i.e., the upper boundary  of one class =the lower boundary of the next class. 4) The minimum value must belong to the first class, and the  maximum must be in the last class. How to determine the class width?                     Estimated CW=(H­L)/5 Session 2 Page 2 Business Statistics I Dr. Changping Wang You should choose a recommended CW (from the list of “easy” numbers)  closest to the estimated class width. When you set up CW=something,  you must check if the number of classes is between 5 and 10. Example 1. If H=­62.274 and L=­119.764, then which could be the first  class of the frequency distribution? Session 2 Page 3 Business Statistics I Dr. Changping Wang                     Example 2.   The following data was about the rates (¢/min) of calling the  world from cell in Canada offered by the Startec Global Communications Session 2 Page 4 Business Statistics I Dr. Changping Wang Australia 2.9¢ El Salvador 13.9¢ Jordan 10.9¢ Serbia 9.9¢ Austria 3.9¢ France 2.9¢ Korea .S 5.0¢ Spain 2.9¢ Bangladesh 3.9¢ Germany 2.9¢ Lebanon 7.9¢ Sweden 3.9¢ Bosnia 10.0¢ Greece 2.9¢ Mexico 1.9¢ Switzerland 3.9¢ Brazil 2.9¢ Guatemala 10.9¢ Pakistan 13.9¢ Syria 33.9¢ Canada 2.9¢ Ireland 2.9¢ Philippines 8.9¢ Taiwan 4.8¢ China 4.8¢ Hong Kong 3.8¢ Poland 2.9¢ Thailand 9.9¢ Colombia 1.5¢ India 1.9¢ Portugal 2.9¢ UK 2.9¢ Croatia 2.5¢ Italy 2.9¢ Russia 1.5¢ Ukraine 9.9¢ Egypt 10.0¢ Japan 5.9¢ Moscow 1.5¢ Vietnam 3¢ Construct a frequency distribution for the above data. Example 3.  The following stem­and­leaf plot shows the number of minutes of a  sample of Internet subscribers spent on the Internet during their most recent session.  Construct a frequency distribution following the rule in the text. Session 2 Page 5 Business Statistics I Dr. Changping Wang Stem Leaf (tens) 1 1 7 7 8 9 2 0 1 2 3 8 9 9 3 0 0 1 1 3 4 6 7 9 9 9  4 0 1 1 2 4 4 6 5 0 1 3 4 4 6 6 6 9 6 2 7 9  Example 4.  Consider the following frequency distributions of the test scores for two different sections. Score # of students in Sec #1 # of students in Sec #2 40 and under 50 14 5 Session 2
More Less

Related notes for QMS 102

Log In


OR

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Sign up

Join to view


OR

By registering, I agree to the Terms and Privacy Policies
Already have an account?
Just a few more details

So we can recommend you notes for your school.

Reset Password

Please enter below the email address you registered with and we will send you a link to reset your password.

Add your courses

Get notes from the top students in your class.


Submit