Class Notes (838,386)
MACM 101 (86)
Bobby Chan (16)
Lecture

# asn3.pdf

7 Pages
82 Views

School
Department
Math & Comp Sci
Course
MACM 101
Professor
Bobby Chan
Semester
Fall

Description
Macm 101 Assignment 3    Due: Week 8 – AT THE BEGINNING OF YOUR CLASS  PLEASE READ CAREFULLY: do not copy the work of other students.  You may discuss the  questions in this homework with other students in this class, but you must provide your  own solutions.  Failure to do so will result in a grade of 0 on your assignment.  Only a  selected number of questions in this homework will be marked.  Student Number:                  Family Name:       Given (Preferred) Name:                                  Date:                  Lateness Policy:  ‐ One day late (from beginning to your class – 24 hours): 10% off  ‐ Two days late: 20% off  ‐ Three days late: 30% off  ‐ Not accepted after this :(  Plagiarism:  Knowingly or unknowingly present as one’s work the ideas or writings of another  without appropriate acknowledgement or referencing.  This includes, but is not limited  to:  ‐ Paraphrasing text without acknowledgement of the source  ‐ Copying the text of another student’s assignment or other students’ assignments  ‐ Copying of visual representations  All forms of cheating and plagiarism could result in a grade of 0 for the whole  assignment, a grade of “F” for the course, or cancellation of enrollment.  I have certified that the attached assignment is my own work according to the  plagiarism statement above:    Signed:                             Please show your work.  The solutions alone are worth very little.  1. There are 400 new students at FIC this semester.  Of the 300 students with known  allergies, 180 are allergic to cats, 120 are allergic to dogs, 30 are allergic to bears.  It  is also known that 12 have cat and bear allergies, 15 have dog and bear allergies,  and 6 who have all three allergies.    a. if a new student is chosen at random, What is the probability that he/she has  exactly 2 allergies?                    b. If two new students are picked at random, what is the probability that they  both have cat allergies?                          c. If two new students are picked at random, what is the probability that they  both have only cat allergies?                             2. Using the laws of set theory, show that for any sets A and B (where ’ is the  complement symbol):  A ∆ B = (A)’ ∆ (B)’                                     3. Use a venn diagram to determine whether the following is true:  For all sets A, B, and C, ( A – C ) ∩ ( C – B ) = ∅                          ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯       ▯ ▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯hat when four numbers from 1 to 100 (inclusive) are picked at  random▯with no repetitions, either all are odd, all are divisible by 3, or all are  ▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯▯ divisible by 5.  ▯▯ ▯▯▯▯▯▯▯▯▯▯▯▯▯▯   ▯ ▯
More Less

Related notes for MACM 101
Me

OR

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Join to view

OR

By registering, I agree to the Terms and Privacy Policies
Just a few more details

So we can recommend you notes for your school.