BIOL 1010 Lecture Notes - Transmembrane Protein, Cellular Respiration, Integral Membrane Protein

10 views10 pages
12 Oct 2012
Membrane Structure and Function
Lecture 13-14
1. Membrane Models
2. Fluid mosaic of lipids, proteins, and carbohydrates
3. Selective permeability
4. Passive transport. Osmosis.
5. Active Transport
6. Exocytosis and endocytosis
The cell membrane
- The plasma membrane is the boundary that separates the living cell from its nonliving
- Membranes are of crucial importance to life, because a cell must spate itself from the
outside environment for two major reasons
o It must keep its molecules of life (DNA, RNA. Proteins) from dissipating away.
o It must keep out foreign molecules that damage or destroy the cells components
and molecules.
1. Membrane Models
- Two generations of membrane models
o A) The Davidson-Danielli model. Sandwiched phospholipid bilayer between two protein
Widely accepted until 1970.
o B) The fluid mosaic model disperses the proteins and immerses them in the
phospholipid bilayer, which is in a fluid state.
Unlock document

This preview shows pages 1-3 of the document.
Unlock all 10 pages and 3 million more documents.

Already have an account? Log in
Singer and Nicolson proposed
- Proteins are individually embedded in the phospholipid bilayer, rather than forming a solid
coat spread upon the surface.
- Hydrophilic portions of both proteins and phospholipids are maximally exposed to water
resulting in a stable membrane structure
- Hydrophobic portions of proteins and phospholipids are in the nonaqueous environment
inside the bilayer.
- Membrane is a mosaic of proteins inserted in a fluid bilayer of phospholipids.
The cell membrane
- The cell membrane functions as a semi-permeable barrier, allowing very few molecules
across it while fencing the majority of organically produced chemicals inside the cell.
- The most common molecule in the model is the phospholipid which is polar
(hydrophilic)head and two (hydrophobic) tails
Artificial membranes
- (a) water can be coated with a single layer of phospholipid molecules
- The hydrophilic heads of phospholipids are immersed in water, and the hydrophobic tails
are excluded from water.
- (b) a bilayer of phospholipids forms a stable boundary between two aqueous
- This arrangement exposes the hydrophilic parts of the molecules to water and shields the
hydrophobic parts from water.
2. The fluid mosaic of lipids, proteins and carbohydrates
- A membrane is held together primarily by the hydrophobic interactions, which are much
weaker than covalent bonds.
Movement of phospholipids
- Most of the lipids and some of the proteins can
drift in the plane of the membrane, but not from
one layer to another.
- Phospholipids move quickly along the
membrane’s plane averaging 2 MicroM per second. Proteins drift more slowly.
Evidence for the drifting of membrane proteins
- When researchers fuse a human cell with a mouse cell, it takes
less than an hour for the membrane proteins of the two
species to completely mix in the membrane of the hybrid cell.
Unlock document

This preview shows pages 1-3 of the document.
Unlock all 10 pages and 3 million more documents.

Already have an account? Log in
Membrane fluidity
- Tails with kinks are keeping molecules from packing together, enhancing membrane fluidity.
Cholesterol within the membrane
- Cholesterol reduces membrane fluidity by reducing phospholipid
movement at the moderate temperatures and also hinders
solidification at low temperature: it make the membrane less fluid
at warm temps and more fluid at lower temp.
Sidedness of the plasma membrane
- The membrane has distinct cytoplasmic and extracellular sides.
- The bifacial quality determined when the membrane is first synthesized and modifies by the
ER and Golgi
- The side facing the inside of the ER, Golgi and vesicles is topologically equivalent to the
extracellular surface of the plasma membrane,
- The other side always faces the cytosol, from the time the
membrane is made by the ER to the time it is added to the plasma
membrane by fusion of a vesicle.
- The small green “trees” represent the membrane carbs that are
synthesized in the ER and modifies by the Golgi
- Vesicle fusion with the plasma membrane is also responsible for
secretion of cell products (purple).
Cell recognition by membrane carbohydrates
- Cell-cell recognition- the ability of a cell to determine if other cells
its encounters are alike or different from itself.
- Cell-cell recognition is crucial in the functioning of an organism. It
is the basis for
o Sorting of an animal embryo’s cells into tissues and organs
o Rejection of foreign cells by the immune system
- Because of their diversity and location, likely candidates are
membrane carbohydrates:
o Branched oligosaccharides
o Some covalently bonded to lipids(glycolipids)
o Most covalently bonded proteins(glycoproteins)
o Vary from species to species, between individuals of the same
species and among cells in the same individual.
Unlock document

This preview shows pages 1-3 of the document.
Unlock all 10 pages and 3 million more documents.

Already have an account? Log in

Get OneClass Notes+

Unlimited access to class notes and textbook notes.

YearlyBest Value
75% OFF
$8 USD/m
$30 USD/m
You will be charged $96 USD upfront and auto renewed at the end of each cycle. You may cancel anytime under Payment Settings. For more information, see our Terms and Privacy.
Payments are encrypted using 256-bit SSL. Powered by Stripe.