Class Notes (837,539)
Canada (510,303)
Statistics (14)
STAT 1770 (14)
Lecture

October 4.docx

4 Pages
119 Views
Unlock Document

Department
Statistics
Course
STAT 1770
Professor
John Sheriff
Semester
Fall

Description
October 4, 2013 Chapter 4, Section 4, pgs 89­92 Chapter 6, Section 1­3 pg 149­161 Chapter 7, Section 1­7 pg 178­196 Excersize 6.16 •  Graph 1  o Positive relationship  Speeds generally improving over time o Curved relationship  Speeds improve quickly early on but then level off  Moderate or reasonable strong •  Graph 2  o Pre 1986  1,5 furlong race o 1896  1.25 furlong race • Comapring the two graphs o Is there consistency? Exercise 4.42 • Linear association, positive • How strong is the relationship? o If they are two quantitative  variables, with no outliers, no  distinct groups  Correlation Summarizing Strength of Association • Where possible, add a numerical summary of the association • Linear relationships o Reasonably simple and quite common o Data may fall close to the straight line, or may be quite variable around  straight­line trend • Correlation( r)  summarizes the  strength of the  linear  relationships  between two  quantitative variables, x and y • Positive relationship­ both products in () are going to be positive • Negative relationship­ one product in () will be negative • If they are an exact linear line­ perfect correlation  o Upward sloping – perfect positive correlation  R=1 o Downward sloping­ perfect negative correlation  R= ­1  • If they are slightly scattered alon
More Less

Related notes for STAT 1770

Log In


OR

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Sign up

Join to view


OR

By registering, I agree to the Terms and Privacy Policies
Already have an account?
Just a few more details

So we can recommend you notes for your school.

Reset Password

Please enter below the email address you registered with and we will send you a link to reset your password.

Add your courses

Get notes from the top students in your class.


Submit