Class Notes (784,400)
Canada (481,119)
Biology (232)
BIOL 373 (20)
Lecture

Chapter_26.doc

5 Pages
117 Views
Unlock Document

School
University of Saskatchewan
Department
Biology
Course
BIOL 373
Professor
michaelgertler
Semester
Fall

Description
Radioisotopes • Radioactivity- a method of dating rocks; discovered at the beginning of the twentieth century • Half-Life- a successive time interval in which half of the remaining radioactive material of the radioisotope decays, either changing into another element or becoming the stable isotope of the same element • For 1C, production in the upper atmosphere is about equal to its natural decay. 14 12 • In an organism, the ratio of C to C stays constant during its lifetime. • When an organism dies, it is no longer incorporating 14C from the environment. • The 14C that was present in the body decays with no replacement and the ratio of 1C to 12C decreases. • As soon as an organism dies, it ceases to exchange carbon compounds with its environment • Isotopes in a sedimentary rock do not contain reliable information about the date of its formation o Since they are transported over long distances and are deposed in another location • But igneous rocks (e.g., lava or volcanic ash), that have intruded into layers of sedimentary rock can be dated. • Other radioisotopes are used to date older rocks. • Decay of potassium-40 to argon-40 is used for the most ancient rocks. • Radioisotope dating is combined with fossil analysis. How have Earth’s Continents and Climates Changed over Time? • Lithosphere- is Earth’s crust which consists of a number of solid plates each about 40 kilometers thick o Floats on a fluid layer of molten rock or magma; the magma circulates because heat produced by radioactive decay deep in Earth’s core sets up convection currents in the fluid • The plates move because magma rises and exerts tremendous pressure • Where plates are pushed together, either they move sideways past each other, or one plate slides under the other, pushing up mountain ranges and carving deep rift valleys (when they occur under water, such valleys are known as trenches) • Where plates are pushed apart, ocean basins may form between them • Continental Drift- movement of the lithospheric plates and the continents they contain • Throughout Earth’s history, the plates that carry the continents have drifted apart and moved back together numerous times. • Plate movement has affected climate, sea level, and the distribution of organisms. Increase of Oxygen in Atmosphere • Increase in atmospheric oxygen have been largely unidirectional • Oxygen first in atmosphere 3.8 bya (billion years ago) • Oxygen concentrations began to increase significantly about 2.4 billion years ago when some prokaryotes evolved the ability to split water as a source of hydrogen ions for photosynthesis. The waste product is O .2 • One lineage of these oxygen-generating bacteria evolved into the cyanobacteria. These organisms formed rocklike structures called stromatolites. • The cyanobacteria liberated enough O to al2ow the evolution of oxidation reactions as the energy source for the synthesis of ATP • When oxygen first appeared in the atmosphere, it was poisonous to the anaerobic prokaryotes that inhabited Earth at the time • Organisms with aerobic metabolism replaced anaerobes in most of Earth’s environments • As life continued to evolve, the physical nature of the planet was irrevocably changed. • Living organisms added O to 2he atmosphere & removed CO from it. 2 • An atmosphere rich in O ma2e possible the evolution of larger cells and more complex organisms. • About 1,500 mya (million years ago), O conc2ntrations became high enough for large eukaryotic cells to flourish and diversify. • By 750–700 mya, O had2increased to levels that could support multicellular organisms. • To the largely unidirectional change in atmospheric oxygen concentration, most physical conditions on Earth have oscillated in response to the planet’s internal processes, such as volcanic activity, continental drift and meteorite impacts • Extraterrestrial events such as collisions with meteorites, have also left their mark causing mass extinctions • Mass Extinctions- during which a large proportion of the species living at the time disappeared Earth’s Climate Change • For Earth to be in a cold, dry state, atmospheric CO lev2ls had to have been usually low • Weather changes rapidly; climates usually change slowly Volcanoes • Most volcanic eruptions produce only local or short-lived effects, but a few very large volcanic eruptions have had major consequences for life • The collision of continents during the late Permian (about 275 mya) created a single, giant land mass called Pangaea and caused massive volcanic eruptions. • Ash from the eruptions reduced the penetration of sunlight to Earth’s surface, lowering temperatures, reducing photosynthesis, and triggering massive glaciations • Massive volcanic eruptions also occurred as the continents drifted apart during the late Triassic period and at the end of the Cretaceous Extraterrestrial Events • The first impact to be documented: meteorite 10 km in diameter that caused a mass extinction at the end of the Cretaceous. • Abnormally high concentrations of iridium in a thin layer separating the Cretaceous and Tertiary rocks were found. • Iridium very rare on Earth, abundant in some meteorites. • 180-km-diameter crater buried beneath the northern coast of the Yucatán Peninsula of Mexico discovered • Iridium layer = meteor
More Less

Related notes for BIOL 373

Log In


OR

Don't have an account?

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Sign up

Join to view


OR

By registering, I agree to the Terms and Privacy Policies
Already have an account?
Just a few more details

So we can recommend you notes for your school.

Reset Password

Please enter below the email address you registered with and we will send you a link to reset your password.

Add your courses

Get notes from the top students in your class.

Submit