Class Notes (839,150)
Canada (511,218)
Mathematics (1,115)
MAT1320 (117)
Lecture

Derivatives of Exponential and Trigonometric Functions

9 Pages
159 Views

Department
Mathematics
Course Code
MAT1320
Professor
Kirill Zaynullin

This preview shows pages 1,2 and half of page 3. Sign up to view the full 9 pages of the document.
Description
Calculus and Vectors – How to get an A+ 5.1 5.2 Derivative of Exponential Function A Review of Exponential Functions Ex 1. Use the graph of the exponential function to The exponential function is defined as: evaluate each limit. x x y = f (x) = b ; b > 0,b ≠1 a) lim 2 x→∞ The graph of the exponential function is represented lim 2 = ∞ below: x→∞ b) lim 2 x x→−∞ x x→−∞ 2 = 0 c) lim 0.2x x→∞ x lim 0.2 = 0 x→∞ d) lim 0.2 x x→−∞ The x-axis ( y = 0) is a horizontal asymptote. lim 0.2 = ∞ x→−∞ B Number e Ex 2. Estimate the number e using formula (1) and by The number e is defined by: taking n =100000 . n e = lim 1 + 1 ⎞ (1) 100000 n→∞ ⎜ n⎟ ⎛ 1 ⎞ ⎝ ⎠ e ≅ ⎜+ ⎟ ≅ 2.7183 which can be written also as: ⎝ 100000 ⎠ 1 u e = lim(1+u) (2) u→ 0 C Exponential Function Ex 3. Estimate e using formula (2) and by taking x The exponential function e may be evaluate using n =100000 . the limit: 100000 n 1/2 ⎛ 1/2 ⎞ x ⎛ x ⎞ e = e ≅ ⎜+ ⎟ ≅1.6487 e = lim ⎜ + ⎟ (3) ⎝ 100000 ⎠ n→∞ ⎝ n ⎠ Proof: x x n ⎛ n⎞ ⎛ n⎞ ⎛ x⎞ ⎜⎛ x⎞ x⎟ ⎜ ⎛ x⎞ x⎟ lim⎜1 + ⎟ = lim⎜⎜1 + ⎟ ⎟ = ⎜lim ⎜ + ⎟ ⎟ = n→∞ ⎝ n⎠ n→∞ ⎜⎝ n⎠ ⎟ ⎜n→∞ ⎝ n⎠ ⎟ ⎝ ⎠ ⎝ ⎠ x ⎛ 1 ⎞ = ⎜ lim(1+u) u ⎟ = ex ⎜u→ 0 ⎟ ⎝ ⎠ D Derivative of e x Ex 4. Differentiate and simplify. 2 x (e )'= ex a) x e 2 x 2 x 2 x x 2 x x d x x (4) (x e )'= (x )'e + x (e )'= 2xe + x e = xe (2+ x) e = e dx x/2 Proof: b) e n n−1 1 1 ⎛ x ⎞ x ⎛ x⎞ ⎛1 ⎞ x (ex/2)' ( ex )' e = e x/2 ⎜1 + ⎟ → e ⇒ n⎜1+ ⎟ ⎜ ⎟ → ( )' x 2 ⎝ n ⎠ ⎝ n ⎠ ⎝ n⎠ 2 e n−1 n n n −x ⎜ ⎛ x ⎞ ⎟ ⎛ x ⎞ x x x c) e ⎜ ⎜ + ⎟ ⎟ → ⎜1+ ⎟ → e ⇒ ∴ (e )' e −x x −1 x −2 x −2x+x −x ⎝ ⎝ n ⎠ ⎠ ⎝ n ⎠ (e )'=[(e ) ]'= (−1)(e ) (e ) = −e = −e 5.1 5.2 Derivative of Exponential Function ©2010 Iulia & Teodoru Gugoiu - Page 1 of 3 Calculus and Vectors – How to get an A+ f (x) Ex 5. Differentiate. E Derivative of e Using (4) and the chain rule: a) e−3x −3x −3x −3x (e )'= e (−3x)'= −3e f( ) f( ) 2 (e )'=e f'( ) b) e−1/ x d (5) 2 ef (x)= ef (xf '(x) 2 2 2e −1/x dx (e−1/x )' e −1/ ( x −2 )' x3 x +1 c) e x +1 x 1 x +1 x 1 2 (2x)e xe (e )'= e ( x +1)'= 2 = 2 2 x +1 x +1 Ex 6. The hyperbolic functions are defined by: c) (cosh x)'= sinh x e −e −x e +e −x sinh x ' sinh x = , cosh x = , tanh x = . ⎛e x+ e−x ⎞ (e +e −x)' e +e −x( 1) 2 2 cosh x (cosh x)'= ⎜ ⎟ = = ⎝ 2 ⎠ 2 2 Prove that: e −e −x 2 2 = = sinh x a) cosh x −sinh x =1 2 2 2 2 2 ⎛e x+ e−x ⎞ ⎛e x− e −x⎞ d) (tanh x'= 1 cosh x − sinh x = ⎜ ⎟ − ⎜ ⎟ cosh x ⎝ 2 ⎠ ⎝ 2 ⎠ sinh x ' (sinh x)'cosh x −sinh x(cosh x)' e2x + e−2x + 2 e2x + e−2x −2 (tanh x)'=⎜ ⎟ = = − =1 ⎝ cosh x ⎠ cosh x2 4 4 cosh x sinh x 2 1 = = b) (sinh x)'= cosh x cosh x cosh x ' ⎛ e −e −x ⎞ ( −e −x)' e −e −x ( 1) (sinh x = ⎜ ⎟ = = ⎜ 2 ⎟ 2 2 ⎝ ⎠ e +e −x = = cosh x 2 x F Derivative of b , b > 0,b ≠1 Ex 7. Differentiate. a) 3x (b )'= (lnb)b x (3 )'= (ln3)3 x d x x (6) b = (lnb b dx 2 x Proof: b) x 2 x xlnb xlnb x 2 x 2 x 2 x x 2 x (b )'= (e )'= e (lnb) = (lnb)b (x 2 )'= (x )'(2 )+(x )(2 )'= 2x(2 )+ x (2 )(ln2) x = x(2 )(2+ xln2) c) (4 + x ) 3 x 4 3 x 4 2 x 4 [(4 + x ) ]'= 3(4 + x ) (4 + x )' x 4 2 x 3 = 3(4 + x ) [(ln4)4 + 4x ] f (x) Ex 8. Differentiate. G Derivative of b 3 Using (6) and the chain rule: a) 2 −x (2−x3)'= (ln2)(2 −x3)(−x )'= −3(ln2)(2 −x3)x2 f (x) f (x) b )'= (lnb b f x ) d (7) b f (x= (lnb)b f (xf '(x) b) 10 e −x dx 5.1 5.2 Derivative of Exponential Function ©2010 Iulia & Teodoru Gugoiu - Page 2 of 3 Calculus and Vectors – How to get an A+ x 2 ' x 2 ⎜10 e −x ⎟ = (ln10) ⎜0 e− x ⎟( ex − x2)' ⎝ ⎠ ⎝ ⎠ ⎛ ex−x2 ⎞ e − x2 = (ln10)⎜10 ⎟ ⎝ ⎠2 e − x 2 2 Ex 9. Find the equation of the tangent line to the Ex 10. Find the local extrema for y = f (x) = x e−x . graph of y = f (x) = x(2−x) at (0,0). −x2 2 − x2 −x2 2 −x −x f '(x) = 2xe + x e (−2x) = 2xe (1− x ) f '(x) = 2 − x(ln2)(2 ) f '(x) = 0 at x = 0,−1,+1 −0 −0 m = f '(0) = 2 −(0)(ln2)(2 ) =1 f (0) = 0, f (−1) = e , f (1) = e1 y −0 =1(x −0) ⇒ ∴ y = x x −1 0 1 f (x) _ 1/e ` 0 _ 1/e ` f '(x) + 0 - 0 + 0 - Local maximum points: (±1,1/e) . Local minimum point: (0,0) . −x2 3 −x Ex 11. Find the points of inflection for y = f (x) = e . Ex 12. Find the global extrema for f (x) = x 10 over −x2 [−1,2]. f '(x) = −2xe 2 2 f '(x= 3x 10 −x− x (ln10)(10 )−x = x 10 [3 (l−10)x] f ''(x) = −2ex −2x(−2xe −x ) f '(x) 0 at x = 0,3/ln10 1.303 = 2e −x2(2x −1) f (0) 0 3 −(3/ln10) f ''(x) = 0 at x = ±1/ 2 f (3/ln10) (3/ln10) 10 ≅ 0.110 −1/2 f (±1/ 2) = e =1/ e f ( 1)− 10 −2 f (2) =8(10 ) = 0.08 x −1/ 2 1/ 2 The global maximum point is: (1.303,0.110) . f (x) ∪ 1/ e ∩ 1/ e ∪ The global minimum point is (−1,−10). f ''(x) + 0 - 0 + The inflection points are (±1/ 2,1/ e) . Reading: Nelson Textbook, Pages 227-232 Homework: Nelson Textbook: Page 232 #2ef, 3cdf, 4abc, 5a, 8, 10a, 13, 16, 17 Reading: Nelson Textbook, Pages 235-239 Homework: Nelson Textbook: Page 240 #1bd, 2abcd, 3, 4, 6, 8, 9 5.1 5.2 Derivative of Exponential Function ©2010 Iulia & Teodoru Gugoiu - Page 3 of 3 Calculus and Vectors – How to get an A+ 5A Derivative of Logarithmic Function A Review of Logarithmic Function Ex 1. Use the graph of the logarithmic function to evaluate y = bx ⇔ x = log y each limit. b a) lim ln x y = f (x) = lbg x, b > 0,b ≠1,x > 0 x→0+ logb(xy) = logbx+log xb logbx = nlog xb li+ ln x = −∞ x→0 x logax logb y = logbx−log xb logbx = b) lim log x logba x→0+ 0.5 lnx = log x log 1= 0 e b lim+log 0.5x = ∞ logx = log x log b =1 x→0 10 b c) x→∞ logx lim logx = ∞ x→∞ d) x→∞ log0.1x lim log0.1x = −∞ x→∞ B Derivative of lnx Ex 2. Differentiate and simplify. 2 (ln x)'=1 a) x ln x x 2 2 2 21 (1) (x lnx)= (x )'lx + x (lnx)'=2 xn x+ x d lnx = 1 x dx x = 2xln x + x = x(2ln x +1) Proof: y= ln x ⇒ x= e y ⇒ ( )'= (y)' ⇒ ln x b) y 1 1 1 x 1= e y' ⇒ y'= y ⇒ y'= ⇒ ∴(ln )'=x 1 e x x ' x lnx ⎛ln x⎞ = (ln )'x− (ln )( )' = x = 1 lnx ⎜ x ⎟ 2 2 2 ⎝ ⎠ x x x x c) e ln x x x x x x1 x⎛ 1⎞ (e ln x = e )'lnx +e (lnx = e lnx +e = e ⎜lnx + ⎟ x ⎝ x⎠ C Derivative of ln f (x) Ex 3. Differentiate and simplify. Using (1) and the chain rule: a) ln(x + x ) [ln f x]'= f x ) 3 2 (x3+ x )' 3x2 + 2x 3x + 2 f x) [ln(x + x )]'= 3 2 = 3 2 = 2 (2) x + x x + x x + x d f '(x) ln f (x)= dx f (x) b) lnx −1 x +1 ⎡ x− ⎤ ' x + x⎛1 − ⎞' x + (1)(x +) (− 1)−1) 2 ⎢ln ⎥ = ⎜ ⎟ = 2 = 2 ⎣ x+1 ⎦ x − x⎝1 + ⎠ x − (x+ 1) x −1 c) ln(e + e−x) (e x+ e−x)' e x− e−x [lne x+ e−x)]'= = = tanh x e x+ e−x e x+ e−x 5A Derivative of Logarithmic Function ©2010 Iulia & Teodoru Gugoiu - Page 1 of 3 Calculus and Vectors – How to get an A+ D Derivative of logbx Ex 4. Differentiate. 1 a) logx (logb x)'= (lnb x (logx)'= 1 (3)
More Less
Unlock Document

Only pages 1,2 and half of page 3 are available for preview. Some parts have been intentionally blurred.

Unlock Document
You're Reading a Preview

Unlock to view full version

Unlock Document

Log In


OR

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Sign up

Join to view


OR

By registering, I agree to the Terms and Privacy Policies
Already have an account?
Just a few more details

So we can recommend you notes for your school.

Reset Password

Please enter below the email address you registered with and we will send you a link to reset your password.

Add your courses

Get notes from the top students in your class.


Submit