Class Notes (837,698)
Canada (510,399)
Biology (2,229)
BIO120H1 (1,171)
Lecture

BIO241H Lecture 1.doc

9 Pages
62 Views
Unlock Document

Department
Biology
Course
BIO120H1
Professor
Jennifer Harris
Semester
Winter

Description
Tuesday, January 6, 2008 Slide 1 - We have 1 midterm, 1 final exam and 6 labs. Labs are 27% with 8% from quizzes, best 2 out of 3 (4% each). 65% is from exams: the midterm is 25% and covers section 1 of lectures and labs 1 to 2. The final exam is worth 40% and covers all lectures and labs 1-6. - Midterm is different from course manual: it is actually on Friday February 27 from 2 to 4. - There will be lab tutorials that will be held in 3 weeks, there will be 3 tutorials, one before the midterm and two before then, they appear on alternating weeks on Mondays from 3 to 4 and will be posted next lecture. - If you have any questions, asked the professor after lecture, come to tutorials or ask on the course website on Blackboard. He doesn’t take questions during the lecture. Slide 2 - This is a picture of a cell and the central dogma of biology is that DNA encodes mRNA which gets translated into proteins. You go from DNA to proteins and proteins are functional components of living cells. - We’re used to seeing pictures like this where the cell is static and doesn’t move but even in a simple diagram like this, you can see there will be lot of movement – first to transcribe DNA into mRNA there needs to be proteins on the DNA moving along the DNA & transcribing the DNA into mRNA. Then the mRNA needs to be transported out of the nucleus and into the cytosol. In the cytosol is where ribosomes bind to mRNA and starts the translation into proteins. That is movement again, movement of mRNA outside of nucleus and into the cytosol where ribosomes will move onto the mRNA, move along it and translate it into proteins and the proteins will move around the cell, some will be secreted outside the cell going through the ER. - This is all to emphasize that there is a lot of movement within a cell & from this picture, one can appreciate that there are numerous compartments within the cell so the cell is compartmentalized into different functional sub compartments like the nucleus that stores DNA & is also the main site for transcription. Then you have the cytosol & different organelles in the cytosol such as ER that all have specialized functions. The cell is compartmentalized in order to provide functional specialization & there is a lot of movement in the cell that is not captured in images such as the one in the slide. - There is a lot of movement in the cell whether it's proteins moving, whether it's signals being transmitted from the outside of the cell to the inside of the cell or whether it's the movement of proteins or lipids within the membranes that surround the cell or the organelles within the cell. Slide 3 - A movie is playing emphasizing movement within the cell. - We will appreciate how active it is inside the cell eventually and we’ll appreciate more the little subtleties we saw in the movie as we go through this part of the course. - Here is an animal cell which has a number of compartments in it called Slide 4 organelles and we’re familiar with these compartments such as lysosome which is the site for the degradation of what the cell doesn’t need anymore, proteins or structural components, that it doesn’t need will go to the lysosome and be degraded. - The mitochondria are the energy source for the cell where ATP is produced. - The nucleus is where the genetic material DNA is stored and site of transcription from DNA to RNA. - The Golgi is the site of protein modifications and sorting. - The endoplasmic reticulum – you have two types: you have the rough ER that is transcribing transmembrane proteins and proteins that will be secreted outside the cell surrounding these little specks called ribosomes that are actively translating proteins from mRNA & delivering them into the ER. You also have smooth ER which is a major site of lipids in the cell. - You can see all these compartments that are separated from each other have specialized roles in the cell. - He has highlighted 2 compartments or properties of the cell: the extracellular matrix and the lysosomes that are specific to animal cells – the extracellular matrix plays an important role in the adhesion of the cell to a specific location & also plays an important role in maintaining cell shape & another role in cell development. Slide 5 - In contrast, plant cells have some specific organelles that aren’t mainly found in animal cells – a major one are chloroplasts that are the site of photosynthesis and are found only in plants and not animal cells. - A vacuole plays a prominent role in a plant cell – they are mainly composed of this large vacuole and there are 2 types of vacuoles: one acts like a lysosome that is found in animal cells and the other ones are for storage of proteins and certain small molecules and they can actually be storage spaces for antimicrobial compounds so when the cell gets punctured, the compounds ooze out of the cell and will kill whatever is trying to invade it. - Okay so you have a vacuole, chloroplast and importantly a cell wall surrounds plant cells and not animal cells – the cell wall is a rigid structure and makes the cell often look square so it is involved in maintaining cell shape as well as help protect from external stresses such as temperature, mechanical stress, insect invasion or bacterial invasion so the cell wall surrounds the plant cell. - Importantly, of course plant cells also have structures such as a nucleus, endoplasmic reticulum, Golgi apparatus, peroxisomes (the site of degradation of many fatty acids), mitochondria and plasma membranes and are also found in animal cells – the ones listed in the slide are in both animal and plant cells. - There are lots of different compartments with functional specialization. Slide 6 - Cytoplasm is the space outside the nucleus, everything outside the nucleus in the cell shown in the slide. The cytoplasm would include the organelles also. - The cytosol is the aqueous component of the cytoplasm so it doesn’t include the organelles. - The lumen is the aqueous part inside organelles – so inside the mitochondria there for example, inside the organelles is the lumen. Slide 7 - In section 3 we will cover the membrane components, so the membranes that define the different organelles within the cell & actually make the boundary of the cell by the plasma membrane. So what are the components of st these membranes that delimit the organelles & the cell itself? – that is the 1 lecture. - Then there is a conundrum b/c if you separate your cell from the environment, you need ways of transporting small molecules or getting signals across from one side of the membrane to the other so we are going to look at how cells can transport small molecules across these membranes in both organelles & the plasma membrane (Lectures 2-4). - Lectures 5-6 we’re going to look at protein sorting so how do proteins get to different places in the cell – they all start out on ribosomes in the cytoplasm & then get shuttled to different compartments of the cell. Some proteins will end up in the membrane, some will be secreted outside the cell & others may be retained within the cell. Just to emphasize, it all starts in the nucleus DNA  mRNA  cytoplasm where it is translated into proteins and that is where it initiates. - Vesicle trafficking will be lectures 7-8 so how do things get around the cell in vesicles – so basically one important thing is things that are destined for membranes or outside the cell must be translocated through vesicles – they will start out in the ER, so these are transmembrane proteins or things destined for the outside of the cell, & will be translocated into the ER, through the Golgi apparatus & then shuttled to their appropriate compartment in vesicles. - Exocytosis & endocytosis is the final part of vesicle trafficking. One of the destinations of vesicle trafficking is exocytosis, translocation of things outside the cell & we’ll also cover how things get into the cells through endocytosis, so how do cells take up molecules from the outside? - Finally we’ll go into a different type of movement which is the transduction of signals from the outside of the cell to the inside of the cell – this should read lectures 10, 11, 12 & not 13 in the slide, so lectures 10 – 12 will be signal transduction or transmission of signals from outside of the cell to the inside of the cell. - You see there is movement that will occur at all these different parts of the section 1 lectures. Slide 8 - We start with membrane structure – they delimit the cells & organelles. Slide 9 - Cell membranes enclose the cell and the organelles – it is an important thing to keep in mind because this is what allows the different compartments to maintain their functional distinction from the rest of the cell so you have division of the cell into compartments and this defines the boundaries of these compartments and maintains differences b/w the cytosol, the organelles & the extracellular environment. These differences are what’s required to maintain different functions in each of these different compartments. - It is important to realize that it is the cell membranes that allow the cell and the organelles to maintain these differences. - To emphasize again, this is not always obvious, so where are these cell Slide 10 membranes localized? It is important to realize that it isn’t just the plasma membrane that is a cell membrane. - The first top-left arrow points at the plasma membrane and then there is the nucleus that is also surrounded by a membrane (going counterclockwise in the diagram). - The ER is also surrounded by a membrane. - Here is the Golgi, Golgi stacks would be surrounded by membrane, different compartments again. - Then there is a lysosome for example that would be surrounded by a membrane. - The vesicles here that would be budding off the Golgi are also surrounded by membranes. - The mitochondria and the chloroplasts in plants would all be surrounded by membrane so you can see that cell membranes are found throughout the cell and it's not only limited to the plasma membrane. - So again the cell membranes divide the cell into compartments & control the movement of molecules b/w these different compartments. Slide 11 - There are 2 major components to all these cell membranes: one is a lipid bilayer, and the lipid bilayer is the basic unit of each of these cell membranes. This is shown in the cross-section and what that means is that there are 2 leaflets to each bilayer, an outer leaflet and an inner leaflet – each one of them is a bilayer of lipids and this structure is very fluid, meaning it's not a static structure, things can move around within this layer. The PM of a mammalian cell has the viscosity roughly equal to olive oil so you can imagine that it is quite fluid & things could move around within this lipid bilayer. - This is the structural component of cell membranes & the functional components are mainly carried out by membrane proteins & they’re shown in the slide in green in the cross-section of the lipid bilayer. These proteins can be transport proteins that allow the movement of small molecules across the membranes b/c again, a lot of these cell membranes will divide the compartments & keep specific molecules out of these compartments & then these membranes can have proteins that selectively allow specific molecules to enter into these compartments – this is carried out by transport proteins. - Then there is the transmission of signals from outside the cell to the inside of the cell and is carried out by transmembrane receptors, these would be proteins found in the lipid bilayer that would allow for transmission of a signal from the outside of the cell to the inside of the cell. - Membrane proteins can also be receptors that recognize specific molecules outside the cell & allow the cell to respond inside. Slide 12 - The structural component again is the lipid bilayer and the lipids that compose the bilayer are called amphiphilic which means they have both hydrophilic or a polar head group (which is the ball structure) and also have a hydrophobic or non-polar tail. - What happens is that these amphiphilic molecules will associate spontaneously into a lipid bilayer facing their hydrophobic tails towards one another and the hydrophilic or polar head groups towards the aqueous environment which is found either outside or inside the cell (the cytosol) – basically the environment of a cell is aqueous. What happens to these amphiphilic lipid molecules is they point their fatty acid tails away from the aqueous environment and point their head groups towards the aqueous environment forming the lipid bilayer. - That basic structure of lipid bilayers in the cell. Slide 13 - We will look at for example, since it's a lipid bilayer, there are 2 faces to it and if we look at the plasma membrane, there is one side of the plasma membrane that will be facing the cytosol which is called the cytosolic face and the other side of the lipid bilayer is called exoplasmic face so these are the lipids with their head groups facing the outside of the cell. You have the cytosolic face facing the cytosol – these would be the head groups facing the cytosol and the exoplasmic face facing the outside of the cell. - Every lipid bilayer has this property, even if we look at the Golgi, you’ll have a lipid bilayer and in red there, it would be the cytosolic face because this lipid bilayer is facing the cytosol and the brown layer which is facing the lumen of the Golgi would be the luminal face of this lipid bilayer. Slide 14 - These lipid bilayers in cells are mainly composed of phospholipids so they have a polar head group and two hydrophobic tails shown. - There are many different categories of phospholipids & in an aqueous environment, these phospholipids will spontaneously form/self associate into a bilayer. If you drop these phospholipids into water for example, they would spontaneously form a lipid bilayer with tails facing each other & the hydrophilic heads facing the aqueous environment or water. This would be called an artificial bilayer. In water if you drop these phospholipids, they will form a bilayer. Slide 15 - We mentioned that lipid membranes are fluid – that means that lipids can move. This movement is limited, lipids can move in lateral diffusion so they can move from side to side – this is very rapid so lipids can move very rapidly within one leaflet, they can also flex so they can move their tails back and forth & they can also rotate but notice that all of these movements are within one leaflet – lateral diffusion is within one leaflet, flexion is within one leaflet and rotation is within one leaflet. - Flip-flop from one leaflet to another is very rare and it doesn’t happen spontaneously very often, the movement of one lipid from one leaflet to another is a very rare event and this is what is called a flip flop. Slide 16 - The rate of movement within a lipid bilayer or within one of the leaflets of the lipid bilayer depends on the structure of the lipid. - Animation: it shows different structures will move at different rates. Description: you have 2 different lipids, you can see the fatty acid chains, there are fatty acids that are straight saturated fatty acid and unsaturated fatty acid chains have little kinks in it. You can see from the movie that different types of lipids would move at different rates within this lipid layer – the saturated ones move slower but the unsaturated move faster. The structure of these lipids determines how rapidly they move within the leaflet of the lipid bilayer. - Although it doesn’t happen spontaneously, there will be flip-flop of lipids Slide 17 from one leaflet to another. There are enzymes in cell membranes that carry out this function of flipping one lipid from one leaflet to the other leaflet. - An example of this is phospholipids that are synthesized on the cytosolic leaflet of the ER need a phospholipid translocator that will rapidly flip-flop the lipid that is newly synthesized on the cytosolic s
More Less

Related notes for BIO120H1

Log In


OR

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Sign up

Join to view


OR

By registering, I agree to the Terms and Privacy Policies
Already have an account?
Just a few more details

So we can recommend you notes for your school.

Reset Password

Please enter below the email address you registered with and we will send you a link to reset your password.

Add your courses

Get notes from the top students in your class.


Submit