Class Notes (837,434)
Canada (510,272)
Biology (2,229)
BIO271H1 (40)
Lecture 9

BIO271 2014 Lecture 9.pdf
Premium

11 Pages
86 Views
Unlock Document

Department
Biology
Course
BIO271H1
Professor
Christopher Garside
Semester
Winter

Description
  Lecture  9:  Circulatory  Systems  Part  2  –  Physics;  the  Heart   Physics  of  Blood  Flow   -­‐ Law  of  Bulk  Flow:Q=  ΔP/R   o Q  =  flow   o ΔP  =  pressure  drop   o R  =  resistance  (due  to  friction)   § R=  8Lη/πr4   • L  =  length  of  the  tube   • η  =  viscosity  of  the  fluid  à  increase  in  viscosity  increases  resistance  =  decrease  flow   • r  =  radius  of  the  tube  (greatest  effect)  à  think  effects  of  vasoconstriction  or  vasodilation     o half  the  radius  =  change  in  resistance  by  16X   o flow  is  directly  proportional  to  the  pressure  difference/drop  from  one  point  to  another;  inversely   proportional  to  resistance   -­‐ Poiseuille’s  equation:   Q=  ΔPπr /8Lη4  à  more  detailed  version  of  Law  of  Bulk  Flow   -­‐ Thickness  of  blood  vessel  walls  does  not  really  have  an  effect  unless  diameter  changes  too       Modeling  Circulatory  Systems   -­‐ compare  Law  of  Bulk  Flow  with  Ohm’s  Law  àQ=  ΔP/R   and  I=  ΔV/R     -­‐ like  electrical  resistors,  blood  vessels  can  be  arranged  in  series  or  parallel   -­‐ resistors  in  series   o R T  = 1 R 2 +  R  …..   § R T  increases   § The  more  resistors,  the  greater  the  resistance   -­‐ resistors  in  parallel   o 1/R T  =  1/R1  +  2/R   § R T  decreases   § Inverse  of  resistance  of  each  resistor   -­‐ Because  of  the  law  of  conservation  of  mass,  the  flow  through  each  segment   of  the  system  must  be  equal   -­‐ Allows  fresh  blood  to  tissues   -­‐ Blood  flows  in  series   o heart  à  arteries  à  smaller  arteries  à  arterioles  à  capillaries  à   venules  à  veins  =  adding  resistors  in  s eries     o Also  within  each  types  of  blood  vessels,  have  vessels  in  parallel  (especially  capillaries)  =  reduces  overall   resistance   o Flow  is  identical  at  each  position  (A,  B,  C,  D,  E)  =  same  volume  of  fluid  has  to  go  through  all  of  them   § but  when  you  have  vessels  in  parallel,  you  can  control  how  much  of  that  volume  of  fluid  is  going   through  each  vessel,  but  changing  the  radius  (by  vasoconstriction/vasodilation)   o we  have  both  resistors  in  series,  and  resistors  in  parallel   o parallel  =  control  and  reduction  of  resistan ce     Blood  Velocity   -­‐ flow  (Q)   o volume  of  fluid  transferred/unit  time  (a  rate)   -­‐ velocity   o distance  transferred/unit  time   o the  fact  that  something  goes  faster  does  not  mean  more/less  is  flowing   -­‐ blood  velocity  =  Q/A   o velocity  is  proportional  to  flow;  inversely  propo rtional  to  the  cross-­‐sectional  area  (of  what  the  vessels  are   within  the  circulatory  system)   o A  =  cross-­‐sectional  area  of  the  vessels   o Therefore,  V  is  inversely  related  to  the  total  X -­‐sectional  area   § Ex.  Total  cross-­‐sectional  area  of  capillaries  is  very  large   =  velocity  is  slow  =  long  time  for  diffusion   • Blood  flow  decreases  as  it  moves  through  capillary  beds  in  the  tissues  (what  we  want!  =   need  diffusion  of  oxygen  out  into  tissues,  and  diffusion  of  CO2  out  into  the  blood)   • Need  some  time  or  else  there  wont  be  ti me  for  diffusion  if  blood  rushes   • Significant  increase  of  cross -­‐sectional  area  across  capillary  bed  =  exchange  of  gases         Transmural  Pressure   -­‐ Gradient  across  the  walls   -­‐ High  pressure  within  vessel,  lower  pressure  outside  the  vessel   o Push  out  on  walls  of  vessel  =  stress/tension  in  the  wall   -­‐ pressure  exerts  a  force  across  vessel  wall   -­‐ law  of  LaPlace   o σ  (T)  =  Pr/w   § σ  =  wall  stress/tension   § T=  tension  within  walls  of  vessel/chamber   § P  =  transmural  pressure   • Difference  between  internal  and   external  pressure   § r  =  vessel  radiu   § w  =  vessel  wall  thickness   o increase  radius  =  increase  in  tension   o increase  in  radius  +  increase  pressure  =  same  tension  in  the  walls   o tension  is  inversely  proportional  to  the  thickness  of  the  wall  of  the  vessel/chamber   o shows  us  what’s  happening  within  a   vessel  or  chamber   -­‐ right  ventricle  <  left  ventricle   -­‐ right  ventricle  pumps  blood  to  the  pulmonary  circuit ;  left  side  pumps  blood  to  the  whole  systemic  system   o right  walls  do  not  have  to  be  as  thick  on  the  right  side  to  create  the  same  tension  required  to  pump  blood   -­‐ arteries  and  veins  have  the  same  diameter,  but  arteries  have  thicker  walls  because  of  the  greater  pressure  in   arteries   -­‐ aorta  à  large  radius  à  large  tension  (large  stress)  =  thick  wall  to  reduce  tension   o too  much  tension  =  dangerous   -­‐ compare  to  vena  cava?   -­‐ Small  radius  =  create  a  greater  pressure  to  create  the  same  tension       Aneurysm  and  LaPlace   -­‐ Aneurysm  =  lethal  =  stretching  of  a  blood  vessel  (often  in  brain  and  abdomen)   -­‐ Expansion  of  a  specific  region  of  a  blood  vessel  =  increased  radius  =  decreased  thi ckness   o Sometimes  stress  is  too  great  =  burst  of  blood  vessels   § Deadly  in  brain  Aneurysm   -­‐ localized,  pathological,  blood-­‐filled  dilatation  of  a  blood  vessel  caused  by  a  disease  or   weakening  of  the  vessel’s  wall   o σ  (T)  =  Pr/w   Hearts   -­‐ cardiac  cycle  –  pumping  action  and  relaxation  phases  of  the  heart   o two  phases   1) systole   • contraction  and  emptying   • spread  of  excitation  across  chambers  of  the  heart   • blood  is  forced  out  into  the  circulation s  (pulmonary  and   systemic  in  humans,  fish  has  one)   2) diastole   • relaxation  and  filling   • follows  repolarization  of  the  heart   • blood  enters  the  heart   -­‐ chambered  hearts  evolved  from  simple  pulsatile  blood  vessels  or  tubular   peristaltic  hearts  (ex.  Insects)     Arthropod  Heart  –  Neurogenic     • neurogenic:  to  contract  they  need  a  signal  from  the  CNS/NS   o myogenic:  within  muscles  itself   • opened  circulatory  system  with  a  chambered  heart,  has  blood  vessels  (arteries)   • Heart  pumps  hemolymph  out  via  arteries         o Hemolymph  returns  to  the  heart  via  ostia  (holes  in  the  walls  of  the  heart)  during  diastole   § Ostial  valves  open  and  close  to  regulate  flow   § The  heart  is  suspended  by  a  series  of  ligaments    (attached  to  exoskeleton)   • Neurons  of  cardiac  ganglion  undergo  spontaneous   rhythmic  depolarization   o Cardiac  ganglion  sits  on  top  of  heart,  or  some  of  the  neurons  can  even  be  inte grated  into  heart  cells   (depends  on  arthropod)     § External  to  muscle  tissue  itself   à  sends  signal  to  start  contraction   1. Signal  is  sent  by  neurons  of  the  cardiac  ganglion   2. valves  in  ostia  close   3. cardiomyocytes  contract     o only  one  exit  for  the  blood  =  out  the  arte ries,  not  ostia   o neural  signal  closed  the  ostia  +  contraction  of  muscle  cells  within  the  heart   o functions  as  a  pressure-­‐suction  pump   -­‐ Pressure-­‐suction  pump:     v As  heart  contracts:  Volume  ↓;  pressure  ↑     o Pressure  inversely  proportional  to  volume   • Hemolymph  ‘squirts’  out  arteries     • Stretched  ligaments  pull  apart  walls  of  heart     o As  heart  contracts,  it  gets  smaller  =  stretches  suspensory  ligaments   v Heart  relaxes:  Volume  of  heart  ↑;  pressure  ↓     • Elastic  recoil  of  ligaments   à  ligaments  pull  the  heart  back  open  (increase  in  heart  volume,  decreasing  pressure)   • Ostial  valves  open  à  blood  flows  back  into  the  heart  (suction)   • Hemolymph  suctioned  into  heart       Vertebrate  Hearts   -­‐ Complex  walls  with  four  main  layers   1) Pericardium   o Sac  filled  with  fluid  à  reduces  friction   between  walls   o Space  between  layers  filled  with   lubricating   fluid   § Outer  (parietal)  and  inner  (visceral)   layers   § Visceral  pericardium:  connected   directly  to  the  heart,  continuous   with  the  epicardium  (outer  layer  of   the  heart)   § Partial:  outer  region  of  the  sac   surrounding  the  heart   o Sac  of  connective  tissue  that  surrounds  heart   o Anchors  it  to  the  thoracic  cavity   o In  most  species,  its  compliant  and  stretches   easily   § Contracts  with  the  heart  mostly   o In  elasmobranchs  à  very  tough  structure   2) Epicardium   o Outer  layer  of  heart,  continuous  with  visceral  pericardium     o Contains  blood  vessels,  and  nerves  that  regulate  heart  and  coronary  arteries  (extend  into  myocardium)   o Some  continue  into  myocardium,  many  do  not   à  remain  within  epicardium   3) Myocardium   o Bulk  of  heart  tissue   o Cardio  myocytes  and  muscle  cells   o Layer  of  heart  muscle  cells  (cardiomyocytes/cardiac  muscle  cells)   o 2  types  of  myocardium:   1) compact  myocardium       § tightly  packed  cells   § regular  pattern   § highly  vascularized   2) spongy  myocardium   § loosely  connected  cells   § some  not  vascularized   o relative  proportions  very  among  species   • mammals   § mostly  compact,  little  spongy  in  our   hearts   § nicely  organized,  contract  together   § lots  of  blood  vessels  to  supply  most   cells   • fish  and  amphibians   § mostly  spongy   § few  blood  vessels,  little  supply  of  oxygen  via  blood  vessels   § arranged  as  trabeculae  (muscular  ridges)  that  extends  into  chambers   4) Endocardium   o Innermost  layer  of  connective  tissue  covered  by  epitheli al  cells  (called  endothelium)     o These  cells  line  the  heart  –  creates  a  smooth  layer  so  blood  doesn’t  have  much  resistance   o Important  for  flow  of  blood   o Blood  Heart  Barrier??     § These  cells  can  secrete  hormones/paracrines,  and  can  also  control  ionic  concentrations  within  the   extracellular  fluids  (ex  what  the  blood  brain  barrier  does)   § Blood  heart  barrier  controlled  by  endothelial  cells  within  the  endocardium     Fish   -­‐ 4  chambers  arranged  in  series   o 2  primary  (atrium  and  ventricle)  and  2  auxillary  (sinus  vneoses  and  bulbus  arteriosus)   o 1  atria/1  ventricle   o contract  in  sequence  -­‐  one  way  valves  à  only  open  in  a  single  direction   § valves  are  important  for  unidirectional  flow   o sinus  venosus:  no  valves  out  to  body  tissues   § very  thin  wall,  doesn’t  contract  very  well   § if  it  did,  some  of  the  blood  may  flow  in  atrium,  but  can  also   flow  back  out  to  the  circulatory   systems   § important  in  fish  for  initiating  the  heartbeat   o once  pressure  in  ventricles  increases,  the  valve  to  the  atrium  closes,  but  cant  open  to  the  atrium   § valve  to  the  bulbus  arteriosus  will  open,  and  blood  flows  in   o bulbus  arteriosus  is  somewhat  compliant,  accepts  a  large  volume  of  blood   § serves  as  a  pressure  reservoir  (similar  to  our  aorta)   à  reduces  variations  in  blood  pressure   § slowly  pushes  blood  to  rest  of  the  system  (as  it  recoils)   à  In  a  relatively  constant  flow   § doesn’t  contract,  accepts  pressure,  increases  in  volume,  and  recoils  to  send  out  to  circulation   o but  there  is  a  valve  between  the  atrium  and  sinus  venosus   § a  valve  between  the  atrium  and  ventricle   § and  a  valve  between  the  ventricle  and  bulbus  arteriosus     Amphibian  Hearts   -­‐ three-­‐chambered  hearts   o 2  atria,  1  ventricle   -­‐ have  a  spongy  myocardium   o 2  supplies  of  blood  are  sent  into  1  ventricle   o oxygenated  from  the  pulmonary,  and  deoxygenated  blood  from  the  systemic  circuit   o not  highly  vascularized  -­‐  oxygenated  blood  finds  its  way  into  entire  ventricle  can  supply  oxygen  to   myocytes  (spongy  myocardial  myocytes)   -­‐ trabeculae  in  ventricle   o helps  prevent  mixing  of  oxygenated  and  deoxygenated  blood  in  ventricle   -­‐ spiral  folds  in  conus  arteriosus   o helps  direct  deoxygenated  blood  to  pulmocutane ous  circuit  and  oxygenated  blood  to  systemic  circuit       o as  pressure  increase  in  ventricle,  this  spiral  fold  stands  up  and  directs   blood   o mechanism  of  spiral  fold  function  not  well  understoo d     Reptile  Hearts  (non-­‐crocodilian)   -­‐ 2  atria  +  1  ventricle  (subdivided  into  3  compartments)   o ventricle  is  incompletely  separated  into  3  compartments   o separation  of  oxygenated  and  deoxygenated  blood  nearly  complete   o conus  arteriosus  divided  to  form  base  of  3  large  arteries     -­‐ flow  of  blood:   o from  system  circulation  –  flows  in  from  vena  cava  à  right  atrium  à   into  heart  à  cavum  venosum  à  falls  over  muscular  ridge  into  the   cavum  pulmonale  (deoxygenated  blood)   o from  pulmonary  vein:  directly  into  the  cavum  arteriosum  (oxygenated   blood)     Shunting  in  Reptile  Hearts   -­‐ under  non-­‐shunting  conditions:  blood  flows  from  right  atrium  to  the  pulmonary   artery,  and  from  the  left  atrium  to  the  right  and  left  aortas   -­‐ can  shunt  in  blood  to  bypass  pulmonary  or  systemic  circuit   -­‐ right-­‐to-­‐left  shunt  (R-­‐L)   o deoxygenated  blood  bypass  pulmonary  circuit  and  enters   systemic  circuits   o during  breath-­‐holding   o when  they  are  under  water  =  lungs  are  useless   o some  blood  from  the  right  atrium  enters  the  aortas,  bypassing  the  lungs   -­‐ left-­‐to-­‐right  shunt  (L-­‐R)   o some  blood  from  the  left  atrium   enters  the  pulmonary  artery,   bypassing  the  tissues   o oxygenated  blood  reenters   pulmonary  circuit     o thermoregulation  à  when  reptiles   heat  up,  they  need  to  lose  some  of   their  body  heat,  they  can  send  the   blood  through  pulmonary  circuit  to   cool  it  down  (cool  down  body  water)   § gives  animal  flexibility  to   dive   o from  cavum  arteriosum  to  caven  venosum,  out  the  left  and  right  aorta  to  body  tissues   o although  incompletely  separated  chambers,  can  function  just  as  well   -­‐ 3  chambers  à  amphibians  and  reptiles  often  go  underwater   o allows  them  to  divert  blood  away  from  t he  lungs  (cant  use  lungs  to  get  oxygen  underwater)   à  allows  for   recirculation  without  lungs   o when  blood  returns  to  the  heart  at  rest,  it  is  still  saturated  with  75%  hemoglobin       Hearts  of  Birds  and  Mammal     -­‐ Fourchambers   o Two  atria   o Two  ventricles   § separated  by  intraventricular  septum  (where  conducting  pathways  are)   -­‐ Valves   o Atrioventricular  (AV)  valves   § Between  atria  and  ventricles   • Tricuspid  (Right  hand  side)  and  Bicuspid  (Left  hand  side)   § Have  extensions/tendons:  chordae  tendineae   • Extend  into  ventricles  and  mainta in  unidirectional  flow   • Constantly  pulling  down  onto  atrioventricular  valves  so  that  they  cannot  open  into  the       atria   • Unidirectional  flow  of  blood   -­‐ Semilunar  valves   o Between  ventricles  and  arteries   § Aortic  and  Pulmonary   o No  chordae  tendineae;  3  flaps  of  tissue   called  semilunar   (half  moon  shaped  bits  of  tissue  that  came  together  to   form  a  valve)   o Excellent  at  providing  one  way  flow,  or  maintaining  one   way  flow  –  doesn’t  not  allow  backflow  of  blood  into   ventricles   o Snaps  shut  when  the  pressure  is  greater  in  the  arte ry  than   the  atria  à  pressure  shuts  the  valve     Cardiac  Cycle  –  High  Coordinated   -­‐ fish  hearts   o serial  contractions  of  chambers   o sinus  venosus  –  not  a  contractile  chamber  in  most  fishes   o valves  are  passive   §
More Less

Related notes for BIO271H1

Log In


OR

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Sign up

Join to view


OR

By registering, I agree to the Terms and Privacy Policies
Already have an account?
Just a few more details

So we can recommend you notes for your school.

Reset Password

Please enter below the email address you registered with and we will send you a link to reset your password.

Add your courses

Get notes from the top students in your class.


Submit