GGR100H1 Lecture Notes - Baseflow, Suspended Load, Drainage Divide

24 views6 pages
Published on 16 Oct 2011
School
UTSG
Department
Geography
Course
GGR100H1
Geomorphology: River Systems and Fluvial Landforms//Chp. 14
How do streams work?
-Rivers drain the landscape; plumbing system for moving water falling in uplands
lowlands
-The water in rivers/stream flow comes from three main sources:
1).Channel Precipitation: rainfall
2). Overland Flow: water running off over land, not contained in a channel. Snow melt =
incredible potential energy as well in areas with a lot of snowfall.
3). Base Flow: comes from groundwater when it isn’t raining. Groundwater
feeds/supplies creeks.
>Groundwater: little droplets of water percolating through tiny pores in the ground;
slow procession of water. Groundwater is replenished by Infiltration [of ppt.], which can
then seep into creeks.
-Streams form networks. They start as channels that merge into branches, and
eventually these networks are large enough and have expanded enough to enter rivers.
-River>Stream>Creek vaguely/size-wise.
-Gravity (for direction) and Insolation (for moisture) are PWRing these stream processes
>Gravity: there must be some slope for water to flow downstream
>drainage divides: local topographic highs (e.g. could be top of a hill) on landscape that
divide where water can flow; water falling directly on top of a drainage divide will fall
either left or right into one of two separated stream channels.
>Insolation/solar radiation: Rainfall comes onto land b/c of evaporation, PWRed by
insolation. Most evaporation happens over the ocean. B/c of advection of moisture into
clouds, rainfall occurs over land.
-Stream discharge: is the volume of water passing through a given cross-section of
stream channel in given amt. of time. Measured in m3/ s-1.
>Stream discharge = Q. Q=wdv = (width of section[m])(depth of water[m])(velocity of
flow[m s-1])
> also denoted by Q = av = (area)(velocity). Use the equation to figure out how Q
changes in case it does
-Q is the volume of flow in a given unit time. The flow can speed up (if water flows over
rapids/steep slope) or slow down (if water flows into a pool area of channel).
-Q remains constant unless you’re losing (evaporation)/gaining (incoming tributaries)
water.
Storm hydrograph
-Lag time: tells us there’re other tributaries that are also receiving the large amount
of storm water, having yet to feed all that extra water into the stream being
studied. Lag time reflects the time needed for the excess water to pass through the
watershed, that is, through all the other tributaries leading to a particular stream.
Sometimes water passing through the watershed takes a while and other times it’s
shorter, reflecting the amount of tributaries necessary for water to flow through
before finally depositing in a particular stream.
-Base flow: also takes a long time because it recharges groundwater, which has to
percolate back deep into the ground through infiltration, and has already been set
Unlock document

This preview shows pages 1-2 of the document.
Unlock all 6 pages and 3 million more documents.

Already have an account? Log in
Geomorphology: River Systems and Fluvial Landforms//Chp. 14
back by lag time. Thus the base flow increase happens slowly and over time.
-River floods: a flood occurs when water can’t fit in a stream channel, which has a
certain depth. It’ll spill onto flat adjacent land, called the floodplain. Flatter the
floodplain, wider flood DMG/flood will spread.
>Flooding occurs when value of Q exceeds cross-sectional area.
>bigger floods are rarer and smaller floods more common
> every 50yrs. or so is how much huge floods of 500 cubic metres will occur
-Stream competence: ability of stream to move particles of a specific size
e.g. In streams where there are large rocks and little water/flow, indicative of
greater flow in the past, capable of moving large particles.
e.g. circular rocks indicate weathering by flowing water; edges of rocks have been
worn DWN so more water can flow, so chemical weathering/erosion over long period
of time has occurred
>The higher the bank/elevation, the better water can flow through [as opposed to
flatter floodplain conditions]
Energy in Stream Flow
- potential energy of flow; water does work when it falls and slope doesn’t have to
be necessarily super-steep for this to occur. Potential energy = (mass)(gravity)
(height).
-Fluvial Processes = the work that rivers do: move rocks and sediments
(erode/deposit). Energy dissipates when work is done.
-more PE = more erosion.
-Base Level: ground zero for PE
>Ultimate Base Level = Sea LVL b/c all sediment will eventually circulate
towards/into the ocean from rivers
>damming creates artificial base level
-Rising or falling sea LVL. Affects stream flow
>Stream Entrenchment: when sea LVL lowers, streams have larger h term, steeper,
more PE to use for erosion. Streams gain more PWR, carving deeper valleys of
streams
> Valley Infilling: when sea LVL rises, all rivers flowing into it get backlogged and
flood; water goes upstream. Streams have smaller h term, less steep, can’t do as
much work. Sediment build-up due to reduced erosion; choked stream
-Streams erode and deposit material; creating erosional and depositional landforms
through fluvial processes.
Erosion in fluvial systems
-River systems exist b/c landscape needs to be drained.
-Rivers do work. Rivers carve valleys and create hydroelectric energy etc.
- 3 main ways we think about flowing water eroding/carving out stream channel(s):
1).hydraulic action: drag of flowing water on banks dislodges sediment
2).abrasion: suspended material bounces along stream channel, aiding erosion by
gouging away at the surfaces. Consider it “liquid sand paper”
Unlock document

This preview shows pages 1-2 of the document.
Unlock all 6 pages and 3 million more documents.

Already have an account? Log in

Document Summary

Rivers drain the landscape; plumbing system for moving water falling in uplands lowlands. The water in rivers/stream flow comes from three main sources: Overland flow: water running off over land, not contained in a channel. Snow melt = incredible potential energy as well in areas with a lot of snowfall. Base flow: comes from groundwater when it isn"t raining. >groundwater: little droplets of water percolating through tiny pores in the ground; slow procession of water. They start as channels that merge into branches, and eventually these networks are large enough and have expanded enough to enter rivers. Gravity (for direction) and insolation (for moisture) are pwring these stream processes. >gravity: there must be some slope for water to flow downstream. >insolation/solar radiation: rainfall comes onto land b/c of evaporation, pwred by insolation. B/c of advection of moisture into clouds, rainfall occurs over land.