Class Notes (835,727)
Canada (509,353)
HMB200H1 (140)
Lecture 18

HMB200 2014 Lecture 18.pdf
Premium

5 Pages
125 Views
Unlock Document

Department
Human Biology
Course
HMB200H1
Professor
John Yeomans
Semester
Winter

Description
  Lecture  18:  Cortex  –  From  Limbic  to  Association   Ventral:  towards  the  belly   Cortex  Types  (first  categorized  by  Brodmann)   Dorsal:  towards  the  back   -­‐ paleocortex  (basal  forebrain)   Rostral:  towards  the  head   o older  areas  of  cortex   Caudal:  towards  the  tail   o thin,  about  only  3  layers     Anterior:  towards  the  front   -­‐ transitional  cortex  (subiculum)   Posterior:  towards  the  rear   o older  cortex   o thin,  about  only  4  layers   -­‐ association  cortex  (frontal  cortex,  Broca’s  area,  vernica’s  area,  temporal  lobe)   o modality  specific  visual  or  motor  areas   à  associated  with  one  sensory  system   o thick  cortex,  less  layering,  lots  of  cells   o less  defined   -­‐ primary  cortex  (visual)   o distinct  layering   o primary  areas  are  easy  to àse  have  nice  layers   § layer  1:  myelinated  axons  in  the  outer  layers  (connect  between  cortical  regions )   • no  cells  in  layer  1   § layer  2  and  3:  small  cells  for  cortical  processing   • these  cells  send  their  axons  out  in  layer  1   § layer  4:  primary  visual  cortex   • thick  in  sensory  areas,  thin  in  motor  areas   • have  strong  sensory  input  from  the  thalamus   § deepest  layers:  large  pyramidal  cells  (especially  large  in  motor  cortex)     • provide  motor  output  of  cortical  spinal  tract   • motor  output  going  down  back  to   thalamus  (deep  brain  areas)  AND  subcortical  regions  to   pons  and  spinal  cord  (cortical-­‐cortical  areas)     Anatomical  Definitions   -­‐ Brodmann’s  Areas  (1-­‐42)   -­‐ Paleocortex:  3  layers   o Oldest  form  of  cortex   o Includes  basal  forebrain,  olfactory  cortex   o 3  distinct  layers,  relative ly  thin  cortex   -­‐ Transitional  cortex   o Transition  from  3 à 6  layers   o Allocortex  to  juxtallocortex  as  u  go  from  3  to  6  layers   o Includes  parahippocampal  and  hippocampal  cortex,  and  many  limbic  areas   -­‐ Limbic:  Visceral  inputs  (taste,  olfaction,  hypothalamus,  dopamine).   o Limbic  cortex  includes  paleocortex,  transitional  cortex,  and  even  some  associate  neocortex   o High  variable   o Limbic  cortex  varies  in  thickness  and  cortical  type   o Cuts  across  all  areas   o Limbic  is  defined  by  types  of  inputs,  not  by  thickness   o If  inputs  are  taste  and  olfaction,  if  they  include  hypothalamic  and  dopamine  projections  =  limbic   -­‐ Primary  neocortex:  Somatic  inputs  from  thalamus.  Layers  4  and  5  dominate.   o Specific  input  from  1  somatosensory  input   à  comes  directly  from  sensory  areas  of  the  thalamus   o In  these  areas,  layers  4  and  5  dominate   o Layer  4  dominates  sensory  cortical  areas     o Layer  5  dominates  primary  motor  cortex  regions   -­‐ Association  neocortex:  Cortical  and  non-­‐primary  thalamus  inputs  (mediodorsal  n,   pulvinar)       Evolution  of  Cerebral  Cortex   -­‐ Subcortex   • Includes:  basal  ganglia,  extended  amygdala,  striatum     • No  cortex?  Subcortical   • Subcortical  extended  amygdala  –  areas  with  no  clear    s -­‐ Paleocortex       • Includes:  basal  forebrain,  olfactory  cortex   • Have  3  thin  layers   -­‐ Archicortex  &  transitional  (juxtallocortex)   •  Includes:  medial  prefrontal,  insular  cortex,  hippocampus   • older  cortical  area  where  you   transition  from  3  to  6  layers   -­‐ Limbic  cortex   • orbitofrontal,  cingulate,  parahippocampal   -­‐ Primary  neocortex   • Motor,  somatosensory,  visual,  auditory.   -­‐ Association  neocortex   • Frontal,  Parietal,  Temporal     Speech  and  Language   -­‐ localized  to  left  hemisphere   -­‐ humans  have  speech  function  in  left  hemisphere,  develops   early  (prenatal)   -­‐ left  hemisphere  is  critical  for  speech  in  97%  of  humans   -­‐ damage  to  left  hemisphere  à  several  areas  with  speech  deficits     Bird  Song  and  Left  Hemisphere   -­‐ bird  song  is  generally  located  in  the  left  forebrain   of  the  bird   -­‐ the  Zebrafish  is  the  only  bird  that  song  learning  is   in  right  hemisphere   -­‐ left  forebrain  is  adequate  for  speech  only  in  the   spring  time  for  some  birds   • sings  in  spring  time  when  testosterone   stimulates  the  growth  of  neurons  in  left  cortical   areas   -­‐ Hyperstriatum,  ventrale ,  and  RA  (robust  nucleus   of  the  arcopallium)  region  develop  in  spring  to   create  song  learning  in  young  male  canaries   • Learn  song  from  parents,  they  develop   new  cortical  areas  in  the  Hyperstriatum,   ventrale,  and  RA  for  song  motor  function     Human  Aphasias  (speech  problems)   • 97%  of  those  with  speech  problems  have  left  hemisphere  injury   • only  those  who  are  left  handed,  and  have  speech  organized   in  right  hemisphere  à  right  hemisphere   damage  leads  to  aphasia   • most  left  handers  also  have  speech  organized  in  left  hemisphere  too   • Broca’s  Tan.  “No  ifs,  ands,  or  buts”   • Damage  to  motor  association  area  in  front  of  the  motor  areas  of  the  left  hemisphere  =  areas  where   damaged  resulted  in  inability  to  speak       • Small  injury  in  left  frontal  cortex  =  patient  couldn’t  produce  any  words  except  2  :  “tan”  and  a  swear  word   • Patient  called  Tan  said  the  word  “tan”  repeatedly     • Produce  distinct  gestures  to  communicate  to  other s   • When  he  got  frustrated,  he  would  emit  a  swear  word   rd • Injury  to  speech  area  was  in  3  convolution  in  the  frontal  lobe   • People  with  Broca’s  aphasia  have  injury  to  frontal  region  (in  the   ventral  frontal  lobe,  just  in  front  of  the  motor   area  for  moving  of  the  face)  à  motor  area  for  speech  production   • Individuals  have  little  spontaneous  speech   -­‐  if  they  do,  its  non-­‐fluent  speech   • Understanding  of  speech  is  not  affected     • Speech  production  is  poor,  speech  comprehension  is  excellent   • Difficult  repeating  words ,  even  if  they  understand  the  word   • Difficulty  naming  objects  (pointing  to  objects  named)   • Wernicke’s  Aphasia .  Lots  of  meaningless  words.  Poor  understanding,  and  recovery   • Discovered  damage  to  another  brain  area  is  important  for  the  understanding  of  speech   • Temporal  lobe  surrounding  A1  (auditory  association  area  à  large  region  surround  primary  auditory   area  located  mainly  inside  the   Sylvain  Fissure)     • This  large  auditory  association  area   extends  out  to  temporal  lobe  from  the  shelf  of  the  top  of  the  Sylvain   fissure   • These  individuals  have  fluid  speech  à  produce  LOTS  of  words  (meaningless  words)  and  poor   comprehension   • Wernicke’s  Theory  of  Speech  and  Reading.   • Speech  is  learned  by  way  of  auditory   association  cortex   • When  people  hear  words  (by  primary   auditory  cortex),  information  is   transferred  to  auditory  association  area   (Wernicke’s  area)   • Within  Wernicke’s  area:  learning  of   speech  by  using  the  sounds  to  construct   knowledge  about  words     • How  we  learn  from  mothers   à   constructing  sounds  into  words   • Conduction’s  Aphasia  –  cannot  repeat   • Damage  to  the  connec
More Less

Related notes for HMB200H1

Log In


OR

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Sign up

Join to view


OR

By registering, I agree to the Terms and Privacy Policies
Already have an account?
Just a few more details

So we can recommend you notes for your school.

Reset Password

Please enter below the email address you registered with and we will send you a link to reset your password.

Add your courses

Get notes from the top students in your class.


Submit