Exams are coming!
Get ready with premium notes and study guides!

Class Notes for MAT136H1 at University of Toronto St. George (UTSG)

  • 978 Results
  • About UTSG

UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 23: Sequences & Series

OC24945841 Page
11 Mar 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 22: The Logistic Model

OC24945841 Page
11 Mar 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 24: Properties & Convergence of Series

OC24945841 Page
11 Mar 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 19: Separation of Variables

OC24945841 Page
4 Mar 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 24: Growth and Decay

OC24945841 Page
4 Mar 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 20: Growth and Decay

OC24945841 Page
4 Mar 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 18: Euler's Method

OC24945841 Page
15 Feb 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 17: Differential Equations & Slope Fields

OC24945841 Page
13 Feb 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture Notes - Lecture 16: Spose

OC24945841 Page
11 Feb 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 16: Midterm Test Review Part 2

OC24945841 Page
11 Feb 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 15: Comparison of Improper Integrals

OC24945841 Page
11 Feb 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 14: Improper Integrals

OC24945841 Page
8 Feb 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 13: Numerical Methods for Definite Integrals

OC24945841 Page
5 Feb 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 12: Algebraic Identities and Trigonometric Substitutions

OC24945841 Page
1 Feb 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 11: In-Class Review (Top Hat)

OC24945841 Page
30 Jan 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 10: Tables of Integrals & CAS

OC24945841 Page
28 Jan 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 5: Differential Equations and Motion

OC24945841 Page
25 Jan 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 3: Area Between Curves

OC24945841 Page
25 Jan 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 8: Integration by Parts

OC24945841 Page
26 Jan 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 2: The Fundamental Theorem and Interpretations

OC24945841 Page
25 Jan 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 9: Integration Practice Problems

OC24945841 Page
26 Jan 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 6: Second Fundamental Theorem of Calculus

OC24945841 Page
26 Jan 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 4: Constructing Antiderivatives

OC24945841 Page
25 Jan 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 7: Integration by Substitution

OC24945841 Page
26 Jan 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 1: Key Concept: The Definite Integral 5.1 and 5.2

OC24945841 Page
23 Jan 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 26: Final Review

OC25564852 Page
5 Apr 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture Notes - Lecture 25: Fax

OC25564853 Page
3 Apr 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 24: 8.4 Variable Density

OC25564852 Page
29 Mar 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 23: 8.1 Areas and Volumes & 8.2 Applications to Geometry

OC25564852 Page
27 Mar 2019
0
8iareasfvolg. com ft pute thevolume of a square base pyramid base 756 ft 756ft ht by h. Step l createhorizontal slicesof thickness oh step 2 bottom lay
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 22: Review lecture

OC25564851 Page
22 Mar 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 21: 10.2 Taylor Series 10.3 Finding and Using Taylor Polynomials

OC25564853 Page
19 Mar 2019
0
10. 2tglorflxzfldtfkacx astfcazq a. l. gwsaiesi. hn n th yo polynomialof fix about thepoint t i. tt n g _go seriesthat you should be familiar with memo
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 20: 10.1 Taylor Polynomials

OC25564852 Page
15 Mar 2019
0
Approximateby a degree 2 polynomial fix 12s c gx c i e a 0 approximate about thepoint 0. Pdx g t c x g 2 fix. R g 12 2 x f pill f oc. iof"co g p o. Pic
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 19: 9.9 Test for convergence and divergence 9.5 Power Series differential Intervel of convergence

OC25564854 Page
13 Mar 2019
0
Should use it whenyouknow howto evaluatethe indetlerent. nl integral qq. I comparisontest i o e anebn n n. Converge converge diverge diverge no. It tt
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 18: 9.3 Comparing Series Via Integrals

OC25564852 Page
9 Mar 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 17: 9.1 Sequence and Series 9.2 Geometric Series

OC25564853 Page
6 Mar 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 16: 11.7 Logistic Modelling

OC25564852 Page
28 Feb 2019
0
Ph birthrate gu deathrate b f k constant. Logistic model population growing butalternating a limit p ipo negatiegnwthnh_e f. cn logistic model k l nega
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture Notes - Lecture 15: Thx

OC25564852 Page
27 Feb 2019
0
Jim are having a cupofcoffee j cools hiscoffeewith 3 tsb of cream theyboth wait tominutes m thencools her otkewith 3 tbsptcreamp. inno drinks the. Is m
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 12: 11.4 separable equations

OC25564852 Page
15 Feb 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture Notes - Lecture 11: Encyclopedia Of Indo-European Culture

OC25564853 Page
12 Feb 2019
0
1 y 1 theslope i y canbeany number y dy dx y . 2xy gcxj. tt g fix g 9 f x zx. fi i. 2x ig f g that contradicts our assumptions that g x fix are differe
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 10: Review For the Midterm

OC25564852 Page
8 Feb 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 9: 7.7 Comparing Improper Integrals

OC25564852 Page
6 Feb 2019
0
77comparingimproperintldf. in ding an exact value of an improper integral is often hard so we can often apure it with aknownintegral tosay ifgiven inte
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 8: 7.6 improper integral

OC25564852 Page
1 Feb 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 7: 7.4&7.5 algebraic identities and trigonometric substitutions & numerical methods for definite integral

OC25564853 Page
29 Jan 2019
0
Hx2eif. dxhl ex hxe f tuixexijfuz. du parametriceacrde parametric partof a hyperbole s0 sno lcoshx. snhx. I d. tt dx 1 dtil. it lpnhessxj l. is. 1snow
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 6: 7.2 Integration by Parts

OC25564853 Page
25 Jan 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 5: 6.4 Fundamental Theorem of Calculus & 7.1 Ingtegration by Substitution

OC25564853 Page
23 Jan 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 7: Graph of the Integral Function

OC26419254 Page
22 Jan 2019
0
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 6: Antiderivatives

OC26419253 Page
19 Jan 2019
0
View Document
UTSGMAT136H1Sarah Mayes-TangWinter

MAT136H1 Lecture 6: Jan 18 Lec06

OC25087571 Page
18 Jan 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 4: Differential Equation and Motions and Differentrial Equations

OC25564853 Page
18 Jan 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 3: 6.1& 6.2 Antiderivatives Graphically & Numerically& Constructing Antiderivatives Analytically

OC25564853 Page
17 Jan 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 2: 5.3 The Fundamental Therom+Interpretations

OC25564853 Page
17 Jan 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 1: 5.1&5.2 Left/Right Hand Sums & Definite Intergrals

OC25564853 Page
17 Jan 2019
0
View Document
UTSGMAT136H1Sarah Mayes-TangWinter

MAT136H1 Lecture 5: Jan 16 Lec05

OC25087571 Page
17 Jan 2019
0
View Document
UTSGMAT136H1Kathlyn DykesWinter

MAT136H1 Lecture 5: Families of antiderivatives

OC26419253 Page
17 Jan 2019
0
View Document
UTSGMAT136H1Sarah Mayes-TangWinter

MAT136H1 Lecture Notes - Lecture 4: Antiderivative

OC25087572 Page
16 Jan 2019
0
View Document
UTSGMAT136H1Kathlyn DykesWinter

MAT136H1 Lecture 4: Using area to compute antiderivatives

OC26419253 Page
14 Jan 2019
0
View Document
UTSGMAT136H1Sarah Mayes-TangWinter

MAT136H1 Lecture 2: Jan 09 Lec02

OC25087572 Page
12 Jan 2019
0
View Document
UTSGMAT136H1Sarah Mayes-TangWinter

MAT136H1 Lecture 1: MAT136 Lec1

OC25087571 Page
12 Jan 2019
0
View Document
UTSGMAT136H1Sarah Mayes-TangWinter

MAT136H1 Lecture 3: Jan 11 Lec03

OC25087571 Page
12 Jan 2019
0
View Document
UTSGMAT136H1AllWinter

MAT136H1 Midterm: MAT136H1 - Term Test 1

OC53748854 Page
15 Sep 2018
0
View Document
UTSGMAT136H1AllWinter

MAT136H1 Midterm: MAT136H1 - Term Test 1

OC53748835 Page
15 Sep 2018
0
View Document
UTSGMAT136H1AllWinter

MAT136H1 Final: MAT136H1 - Final Exam - Kapovitch, V

OC53748868 Page
15 Sep 2018
0
= 1 2 2 + u 4 u du u= ( 3. = 5 u 5 7 u 7 + c. = 5 sin x5 7 sin x7. Use double angle formula: cos2x=1-2sin 2 x sin 2 x= (1-cos2x)/2 cos2x=2cos 2 x-1 cos
View Document
UTSGMAT136H1AllWinter

MAT136H1 Final: MAT136H1 - Final Exam - Mayes-Tang, S

OC53748868 Page
15 Sep 2018
0
= 1 2 2 + u 4 u du u= ( 3. = 5 u 5 7 u 7 + c. = 5 sin x5 7 sin x7. Use double angle formula: cos2x=1-2sin 2 x sin 2 x= (1-cos2x)/2 cos2x=2cos 2 x-1 cos
View Document
UTSGMAT136H1Mayes-Tang, SWinter

MAT136H1 Lecture 32: Taylor polynomials

OC5374883 Page
11 Apr 2018
0
View Document
UTSGMAT136H1Mayes-Tang, SWinter

MAT136H1 Lecture 33: Taylor series convergence

OC5374883 Page
11 Apr 2018
0
View Document
UTSGMAT136H1Mayes-Tang, SWinter

MAT136H1 Lecture 27: Sequence and series

OC5374883 Page
11 Apr 2018
0
View Document
UTSGMAT136H1Mayes-Tang, SWinter

MAT136H1 Lecture 30: Convergence Test

OC5374882 Page
11 Apr 2018
0
View Document
UTSGMAT136H1Mayes-Tang, SWinter

MAT136H1 Lecture 23: Review

OC5374882 Page
11 Apr 2018
0
View Document
UTSGMAT136H1Mayes-Tang, SWinter

MAT136H1 Lecture 29: Series

OC5374883 Page
11 Apr 2018
0
View Document
UTSGMAT136H1Mayes-Tang, SWinter

MAT136H1- Final Exam Guide - Comprehensive Notes for the exam ( 38 pages long!)

OC53748838 Page
29 Mar 2018
0
View Document
UTSGMAT136H1Mayes-Tang, SWinter

MAT136H1 Lecture 7: Applications of Integrals

OC5374885 Page
12 Feb 2018
0
View Document
UTSGMAT136H1Mayes-Tang, SWinter

MAT136H1 Lecture 14: Integration by Parts

OC5374883 Page
12 Feb 2018
0
View Document
UTSGMAT136H1Mayes-Tang, SWinter

MAT136H1 Lecture 16: Partial Fractions and Integration

OC5374884 Page
12 Feb 2018
0
View Document
UTSGMAT136H1Mayes-Tang, SWinter

MAT136H1 Lecture 12: Work, Hooke_s Law, Variable Density

OC5374884 Page
12 Feb 2018
0
View Document
UTSGMAT136H1Mayes-Tang, SWinter

MAT136H1 Lecture 8: How to Find the Area & Volume of a Given Function

OC5374883 Page
12 Feb 2018
0
View Document
UTSGMAT136H1Mayes-Tang, SWinter

MAT136H1 Lecture 15: Integration of Rational Functions

OC5374884 Page
12 Feb 2018
0
View Document
UTSGMAT136H1Mayes-Tang, SWinter

MAT136H1 Lecture 11: Work

OC5374883 Page
12 Feb 2018
0
View Document
UTSGMAT136H1Mayes-Tang, SWinter

MAT136H1 Lecture 10: Volume and Rotation

OC5374883 Page
12 Feb 2018
0
View Document
UTSGMAT136H1Mayes-Tang, SWinter

MAT136H1 Lecture 13: Average Values

OC5374883 Page
12 Feb 2018
0
View Document
UTSGMAT136H1Mayes-Tang, SWinter

MAT136H1 Lecture 9: Volume of domain in 3-space

OC5374883 Page
12 Feb 2018
0
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 35: Arc Length

OC5374882 Page
13 Apr 2016
35
Arc length parameterization (t)r (t ) r 0 to (t)r du (t) || d u (t ) r 0 (t)dt v speed. Arc length, s, from reference point, from t s = t0 s = . 2 + 1
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Study Guide - Final Guide: Telephone Numbers In The United Kingdom, If And Only If, Hit106.9 Newcastle

OC537488104 Page
13 Apr 2016
85
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 35: Review of Integrals

OC5374883 Page
11 Apr 2016
32
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 38: Hit106.9 Newcastle

OC5374882 Page
11 Apr 2016
19
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Study Guide - Final Guide: Scilab, If And Only If, Selenium

OC53748889 Page
8 Apr 2016
87
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 34: Ibm System P

OC5374883 Page
7 Apr 2016
20
= l lim n f(x) such that f lim x : ex. (x) = a n x 1/x = 1: monotonicity and boundedness, must be monotonically increasing or decreasing, must be bound
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 37: 12.9 continued and Ch 16 Second Order Differential Equations

OC5374882 Page
7 Apr 2016
15
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 33: Review

OC5374882 Page
5 Apr 2016
23
C n a n = c 0 + c 1 a + c 2 a 2 + . (x. 1 ( (x+1)) = 1 ( + 1 + ( + 1 2 ( + 1 3. Suppose f(x) has a series expansion on (a r,a+r) f f (x) f f (a) (x) f
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 36: 12.9 continued

OC5374882 Page
5 Apr 2016
13
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 32: Revision + Taylor Series

OC5374883 Page
4 Apr 2016
17
C n a n = c 0 + c 1 a + c 2 a 2 + . (x (x (x n=1. 1 x = 1 + x + x 2 + x 3 + . 1 ( (x+4) = 1 ( + 4 + ( + 4 2 ( + 4 3 x x x ( + 4 | < 1. 1 < x| + 4| < 1.
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 31: Infinite Geometric Series

OC5374882 Page
1 Apr 2016
19
1 + x + x 2 + x 3 + x 4 n=0 x n = 1. Let y = 1 + x + x 2 + x 3 x. 1 (1 x) 2 = dx when 1<x<1 x dy = 1 + 2 + 3 2 + 4 3 x. 1 x = 1 (1 x) 2 y = 1. C n a n
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 34: 12.7 continued & 12.8 Length of Curves

OC5374883 Page
1 Apr 2016
30
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 33: 12.6 continued & 12.7 Motion In Space

OC5374882 Page
30 Mar 2016
26
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 30: Power Series

OC5374883 Page
30 Mar 2016
14
C n n = c 0 + c 1 + c 2 x n=1. 0 + c 1 a + c 2 a 2 (x (x n=1. It converges on a ( r a + r. R = radius of convergence interval diverges on ( a r ( + r a
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 32: 11.3 Calculus in Polar Coordinates & 12.6 Calculus of Vector Valued Functions

OC5374882 Page
24 Mar 2016
15
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 29: Alternating Series Cont.

OC5374882 Page
24 Mar 2016
12
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 28: Alternating Series

OC5374884 Page
22 Mar 2016
17
S = 1 2 n = n. 1 n 1 n n=1 n 1 b n n = 0 lim n . + ( 1 n 1 n + ( 1 n b. S = b1 b 2 + b 3 b 4 l sn l l rn l. S = n=1 n| b n 1 ( 1) n 1 n 4. 0 n| < b n+1
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 31: 11.2 Polar Coordinates: Plotting & 11.3 Calculus in Polar Coordinates

OC5374882 Page
22 Mar 2016
30
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 30: 11.2 Polar Coordinates

OC5374883 Page
21 Mar 2016
39
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 27: Comparison Test/Limit Comparison Test

OC5374882 Page
21 Mar 2016
82
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 29: 11.1 Parametric Equations: Tangents & 11.2 Polar Coordinates

OC5374883 Page
17 Mar 2016
19
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 26: Integral Test

OC5374882 Page
17 Mar 2016
15
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 25: Series

OC5374883 Page
15 Mar 2016
9
A n = a 1 + a 2 + a 3 + . 1 + 2 + 3 + 4 + 5 n=1 a i = a 1 + a 2 + a 3 + . + a n a n n=1 is convergent a n n=1 is divergent r. R = a r 2 n(1. S (1 a(1 r
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 28: 11.1 Parametric Curves & Tangent Lines

OC5374883 Page
15 Mar 2016
12
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 24: If And Only If

OC5374882 Page
14 Mar 2016
9
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 27: 10.4 Working with Taylor Series

OC5374882 Page
14 Mar 2016
28
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 26: 10.2 cont’d & 10.3 Taylor Series

OC5374882 Page
10 Mar 2016
15
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 23: Sequences

OC5374883 Page
10 Mar 2016
13
= { 1 n+2: fibonacci sequences: a 1 = 1. 1 n 1 n=1 n = a n 1 + a n 2 for all n>2. { n n=1 well defined/exists is said to converge if the limit, lim n a
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 22: Growth Models - Continued

OC5374882 Page
8 Mar 2016
19
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 25: 10.2 Properties of Power Series

OC5374882 Page
8 Mar 2016
14
=1 y+y 2 y 3 +y 4 = ( )1 k 2k x n k=0. Set x=y 2 : ey2 = 1 + y2 + 2! y4 3! Set x= y 2 : ey2 = 1 y2 + 2! x6 3! x2 x2 = x2 x4 + 2! x8 + . e x5 + . inx s
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 24: 10.2 Properties of Power Series

OC5374883 Page
7 Mar 2016
47
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 21: Separable Equations

OC5374883 Page
7 Mar 2016
22
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 23: 10.1 Approximating Functions with Polynomials - Continued

OC5374882 Page
3 Mar 2016
27
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 20: Scilab

OC5374884 Page
3 Mar 2016
19
+ c dx c x ex dx dx ln sinx anxdx t. | + c x| osxdx c x n+1 + c. = x + c inxdx osx s. X + c ecxdx s otxdx c sinx. X 2 dx u = 9 x2 u xdx, d = 2 du = x.
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 22: 10.1 Approximating Functions with Polynomials

OC5374882 Page
1 Mar 2016
18
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 19: Differential Equations

OC5374883 Page
1 Mar 2016
30
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 18: Arc Length cont.

OC5374882 Page
29 Feb 2016
23
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 21: 9.6 Alternating Series and Absolute and Conditional Convergence 10.1 Approximating Functions with Polynomials

OC5374883 Page
29 Feb 2016
25
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 20: Divergence Integral Tests 9.5 Ratio Test 9.6 Alternating Series and Absolute and Conditional Convergence

OC5374882 Page
25 Feb 2016
21
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 17: Improper Integrals pt. 2 & Intro to Arc-Length

OC5374882 Page
25 Feb 2016
30
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 16: Improper Integrals

OC5374882 Page
23 Feb 2016
29
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 19: Divergence Integral Tests for Infinite Series

OC5374883 Page
23 Feb 2016
21
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 18: 9.2 Sequences (continued) & 9.3 Infinite Series

OC5374883 Page
16 Feb 2016
20
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 15: General Strategies

OC5374882 Page
16 Feb 2016
22
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 14: Ab1

OC5374883 Page
11 Feb 2016
28
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 17: 9 Sequences & Infinite Series, 9.1 Overview, 9.2 Sequences

OC5374883 Page
11 Feb 2016
20
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 13: Trigonometric Substitution

OC5374882 Page
9 Feb 2016
43
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 16: 8.5 Modelling with Differential Equations

OC5374883 Page
9 Feb 2016
25
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 15: 8.4 First Order Linear DEs & 8.5 Modelling with DEs

OC5374883 Page
8 Feb 2016
20
Examine behaviour y(t) = ce kt b/k dy = k + b > 0. Y dy = 0 b y = k dt dy = k + b = kk. , ky y < k dy = b k > 0 dt. K > b b > 0 k + b < 0 y > k. , ky d
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 12: Scilab

OC5374884 Page
8 Feb 2016
35
4 s in x s (sin x) (1. 1 2 2 + u 4 du u 5. )du u 3 + c sin x3 + c. 2 + 2 sinx + c in xcos xdx s. 1 cos2x 2 in x(1 s os xdx c u 4 u 2 (1 u 7 + c u 5 7.
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 11: Integration by Parts

OC5374883 Page
4 Feb 2016
28
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 14: 8.4 First Order Linear DEs & 8.5 Modelling with DEs

OC5374883 Page
4 Feb 2016
20
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 13: 8.3 Separable DEs & 8.4 First Order Linear DEs

OC5374883 Page
2 Feb 2016
26
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 10: Examples of Volume/Average Value + Mean Value Theorem

OC5374883 Page
2 Feb 2016
25
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 9: Volume

OC5374883 Page
1 Feb 2016
21
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 12: 8.1 & 8.3

OC5374883 Page
1 Feb 2016
17
Review of exponential models y(x) = ce kx ce (ce ) kx = k kx = k y. Then n(t) = n(0)e kx (from y = ce kx ) dy = k y dx dy = k y dx dn = k dt. 2 k = k =
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 11: If And Only If

OC5374883 Page
29 Jan 2016
17
> w q (x)dx inconclusive g q (x) g a) b) c) d) > f (x), x (x)dx inconclusive g (x) g. = 2 x 12 x 12 x. Is wrong! b a f (x)dx is defined as q q b lim a
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 7: Substitution Rule

OC5374882 Page
27 Jan 2016
18
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 3: If And Only If

OC5374883 Page
27 Jan 2016
17
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 1: Antiderivative, If And Only If

OC5374882 Page
27 Jan 2016
71
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 8: Applications of Integration

OC5374884 Page
27 Jan 2016
22
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 5: If And Only If

OC5374883 Page
27 Jan 2016
17
/n) b c n i=1 c a x = 1/n f (x)dx f (x)dx f (x)dx f (x)dx f (x)dx f (x) x f (yi) y) If a<b then (x)dx (x)dx b a b a. Rules: b a b (x)dx a b for an inpu
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 4: If And Only If

OC5374882 Page
27 Jan 2016
15
/n b i 1 x i f (x ) x i provided that this limit exists and gives x i = + i a. )/2 b definite integral of f on [a,b] is a (b a f (x)dx. If f has only a
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 2: Intro to Integration

OC5374884 Page
27 Jan 2016
34
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 6: Theorems

OC5374882 Page
27 Jan 2016
19
View Document
UTSGMAT136H1Anthony LamSpring

MAT187H1 Lecture 6: 7.4 (Inverse) Trig Subtitutions

OC5374883 Page
27 Jan 2016
28
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 3: Unit Hyperbola, Arc Length, Unit Circle

OC5374885 Page
27 Jan 2016
25
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 2: Density, Equilibrium Point

OC5374884 Page
27 Jan 2016
17
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 4: Inverse Hyperbolic Function, Product Rule, Mnemonic

OC5374884 Page
27 Jan 2016
26
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 10: Improper Integral, Jinn

OC5374884 Page
27 Jan 2016
22
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 9: Numerical Integration, Trapezoidal Rule, Riemann Sum

OC5374882 Page
27 Jan 2016
18
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 8: Numerical Integration, Trapezoidal Rule

OC5374882 Page
27 Jan 2016
16
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 1: Density

OC5374881 Page
27 Jan 2016
25
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 7: Partial Fraction Decomposition

OC5374883 Page
27 Jan 2016
18
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 5: Formula D, Integrating Factor

OC5374884 Page
27 Jan 2016
33
View Document
View all Premium Notes (100+)
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 1: Antiderivative, If And Only If

OC5374882 Page
27 Jan 2016
71
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 2: Intro to Integration

OC5374884 Page
27 Jan 2016
34
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 10: Examples of Volume/Average Value + Mean Value Theorem

OC5374883 Page
2 Feb 2016
25
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 4: Differential Equation and Motions and Differentrial Equations

OC25564853 Page
18 Jan 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 5: 6.4 Fundamental Theorem of Calculus & 7.1 Ingtegration by Substitution

OC25564853 Page
23 Jan 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 3: 6.1& 6.2 Antiderivatives Graphically & Numerically& Constructing Antiderivatives Analytically

OC25564853 Page
17 Jan 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 1: 5.1&5.2 Left/Right Hand Sums & Definite Intergrals

OC25564853 Page
17 Jan 2019
0
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 8: 7.6 improper integral

OC25564852 Page
1 Feb 2019
0
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture Notes - Lecture 3: If And Only If

OC5374883 Page
27 Jan 2016
17
View Document
UTSGMAT136H1Debanjana KunduWinter

MAT136H1 Lecture 7: 7.4&7.5 algebraic identities and trigonometric substitutions & numerical methods for definite integral

OC25564853 Page
29 Jan 2019
0
Hx2eif. dxhl ex hxe f tuixexijfuz. du parametriceacrde parametric partof a hyperbole s0 sno lcoshx. snhx. I d. tt dx 1 dtil. it lpnhessxj l. is. 1snow
View Document
UTSGMAT136H1Kathlyn DykesSpring

MAT136H1 Lecture 13: Numerical Methods for Definite Integrals

OC24945841 Page
5 Feb 2019
0
View Document
UTSGMAT136H1Anthony LamSpring

MAT136H1 Lecture 11: Integration by Parts

OC5374883 Page
4 Feb 2016
28
View Document
Showing 1 — 12 of 978 results
View all professors (30+)

Class Notes (1,100,000)
CA (620,000)
UTSG (50,000)
MAT (4,000)
MAT136H1 (900)