

A215080


T(n,k) = sum( (kj)^n * binomial(n,j), j=0..k).


2



1, 0, 1, 0, 1, 6, 0, 1, 11, 54, 0, 1, 20, 151, 680, 0, 1, 37, 413, 2569, 11000, 0, 1, 70, 1128, 9450, 52431, 217392, 0, 1, 135, 3104, 34416, 243255, 1251921, 5076400, 0, 1, 264, 8637, 125248, 1113027, 7025016, 34282879, 136761984, 0, 1, 521, 24327, 457807, 5064143, 38811015, 225930121, 1059812993, 4175432064, 0, 1, 1034, 69334, 1685266, 23031680, 212609518, 1465077802, 8026643702, 36519075583, 142469423360
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


LINKS

Vincenzo Librandi and Alois P. Heinz, Rows n = 0..140, flattened


FORMULA

T(n,k) = sum( (kj)^n * binomial(n,j), j=0..k).


MATHEMATICA

Flatten[Table[Table[Sum[(k  j)^n*Binomial[n, j], {j, 0, k}], {k, 0, n}], {n, 0, 10}], 1]


CROSSREFS

Row sums sequence is A215077.
Binomial convolution of descending powers.
Sequence in context: A019846 A320906 A195445 * A317446 A137943 A202189
Adjacent sequences: A215077 A215078 A215079 * A215081 A215082 A215083


KEYWORD

nonn,tabl


AUTHOR

Olivier Gérard, Aug 02 2012


STATUS

approved



