Let u, v, and w be vectors in R^n and let c and d be scalars. Then

a. u+v=v+u. Commutativity

b. (u+v)+w=u+(v+w). Associativity

c. u+0=u

d. u+(-u)=0

e. c(u+v)=cu+cv. Distributivity

f. (c+d)u=cu+du. Distributivity

g. c(du)=(cd)u

h. 1u=u

simplify the given vector expression. Indicate which properties in the thereom above you use.

5(a-2b)+2(5b+a)

5(a-2b)+2(5b+a)=(5a-10b)+(10b+2a) OPTIONS: a. & c., b. & d., c. & f., d.& g., or e. & g.?

=(5a+2a)+(10b-10b) OPTIONS: a. & b., a. & e., a. & f., b. & e., or e. & f.?

=7a

12 points 0/100 Submissions Used Let u, v, and w be vectors in R and let c and d be scalars. Then Commutativity b. (uvHWANHNAssociativity C. u+0 Distributivity Distributivit f. (ct d)u cu+ du Simplify the given vector expression. Indicate which properties in the theorem above you use S(a 2b) 2(5b + a) 5(a 2b) +2(5b+a)(5a 10b)+(iob2a) properties -(5a +2a) +(10b -10b) properties Need Help? ReaditTalk to a Tutor