Class Notes (1,100,000)
US (470,000)
NKU (40)
MAT (9)
Lecture 8

MAT 114 Lecture Notes - Lecture 8: Linear Programming, Lincoln Near-Earth Asteroid Research, Feasible Region


Department
Mathematics
Course Code
MAT 114
Professor
Lisa Holden
Lecture
8

This preview shows pages 1-3. to view the full 29 pages of the document.
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Section 5.2
SOLVING LINEAR PROGRAMING
PROBLEMS GRAPHICALLY
LINEAR PROGRAMING LP
PROBLEMS
Alinear programing problem
in two unknowns Xand Y
is one in which we are able to
find the maximum or minimum
value of alinear expression
Ix tby
called the objective function
subject to anumber of linear

Only pages 1-3 are available for preview. Some parts have been intentionally blurred.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
constraints of the form
Cx tdy Ee
or atdy Ie
the largest or smallestvalue
of the objective function is
called the OPTIMAL VALUE
and apair of vanes of X
and ythat gives the optimal
value constitutes an OPTIMAL
SOLUTION
the set of all points lay 1
satisfying all the constraints
is the FEASIBLE REGION
for the problem

Only pages 1-3 are available for preview. Some parts have been intentionally blurred.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
EXAMPLE of LINEAR
PROGRAMING PROBLEM
Minimize cXt24
subject to
Xt 3yd 30
2X tyI30 constraints
XI0y.IO
Questions
What is the objective
function
List the constraints
You're Reading a Preview

Unlock to view full version