

Appendix K: Parameters for Typical BWR-5 and PWR Reactors

TABLE K.1

Key Characteristics of the Nine Mile Point 2 General Electric BWR-5 with GE11 Fuel and of the Seabrook Station PWR

Parameters	Units	BWR	Sources	PWR	Sources
Reactor General Parameters		Nine Mile Point 2, GE BWR-5		Seabrook Station Reactor	
Thermal power, $\dot{Q}_{\rm th}$	MWth	3323	A	3411	G
Net electric power, $\dot{Q}_{\rm e}$	MWe	1062	В	1148	В
Efficiency, η	%	32.0	(1)	33.7	(1)
Nominal pressure, p	MPa	7.14	A	15.51	G
Steam dome pressure, p_{dome}	MPa	7.03	A	_	_
Total core pressure drop, $\Delta p_{\rm core}$	MPa	0.171	A	0.197	G
Final feedwater temperature	°C	215.6	A	226.7	G
Core inlet temperature, $T_{\rm in}$	°C	278.3	A	293.1	G
Core exit temperature, T_{exit}	°C	286.1	(2)	326.8	(12)
Core average exit quality, x	%	14.6	C	_	_
Total steam flow rate, \dot{m}_{steam}	kg/s	1798	A	1905.1	G
Core coolant flow rate, $\dot{m}_{\rm core}$	kg/s	13671	A	17476 ^a	G
Number of assemblies, N_a	_	764	В	193	G
Active core equivalent diameter	m	4.75	В	3.37	В
Coolant mass in primary circuit	t	260	В	354	В
Fuel enrichment (initial core), r	%	0.7/1.8/2.2	В	1.6/2.4/3.1	В
Fuel enrichment (reloads), r	%	3.5	В	3.1/3.4/4.2°	В
Number of loops	_	2	В	4	В
Cycle length	months	16 ^d	В	12 ^d	В
Average discharge burnup	MWd/tU	32300	В	33000	В
Fuel inventory	tHM	141	В	89	(4)
•	$t(UO_2)$	160	(4)	101	G
Average core power density	kW _{th} /L	52.3	(3)	104.5	(3)
Average core specific power	kW _{th} /kg _{HM}	23.6	(15)	38.3	(15)

continued

TABLE K.1 (continued)
Key Characteristics of the Nine Mile Point 2 General Electric BWR-5 with
GE11 Fuel and of the Seabrook Station PWR

Parameters	Units	BWR	Sources	PWR	Sources
Reactor General Parameters		Nine Mile Point 2, GE BWR-5		Seabrook Station Reactor	
Configuration	_	9×9	D	17 × 17	G
Fuel rods per assembly, N_{rods}	_	74	D	264	G
Number of part length fuel rods	_	8	D	_	_
Number of full length fuel rods	_	66	D	_	_
Number of water rods, $N_{\rm wr}$	_	2	E	_	_
Channel width, $l_{\rm ch}$	mm	134.1 (inside) 138.6 (outside)	E H	214.0	G
Assembly pitch, l	mm	152.4	В	215.0	G
Core average flow rate per assembly, $\dot{m}_{\rm a}$	kg/s	15.4	(5)	89.8	(13)
Assembly flow area, $A_{\rm fa}$	m^2	9.718×10^{-3b}	(6)	2.444×10^{-2}	(14)
Core average assembly mass flux, G_a	$kg m^{-2} s^{-1}$	1584 ^b	(7)	3675.4	G
Fuel Rods		GE11, 9×9 fuel		Seabrook Station Reactor	
Pellet percent of theoretical density	_	97	D	95	G
Rod-to-rod pitch, P	mm	14.37	D	12.6	G
Fuel rod outside diameter, D	mm	11.20	D	9.5	G
Cladding thickness, $t_{\rm clad}$	mm	0.71	D	0.572	G
Fuel-cladding gap (cold), $t_{\rm gap}$	mm	0.09	(8)	0.0826	G
Fuel pellet diameter, $D_{\rm f}$	mm	9.60	D	8.192	G
Fuel pellet length, $L_{\rm f}$	mm	10	D	9.8	G
Diameter of water rods, D_{wr}	mm	24.9	E	_	_
Total fuel rod height	m	4.09	D	3.876	G
Heated fuel height, L	m	3.588	D	3.658	G
Part length rod length	m	2.286	D	_	_
% of energy deposited in the fuel rods	%	96.5	Ι	97.4	G
Peak LHGR, q_0	kW/m	47.24	D	44.62	G
Core average LHGR, $\langle q' \rangle$	kW/m	17.6	F	17.86	G
Core average subchannel flow rate, \dot{m}_{ch}	kg/s	0.175 (interior)	(9)	0.335 (interior)	(9)
Subchannel flow area, $A_{\rm fch}$	m^2	0.134 (edge) 0.0922 (corner) 1.08 × 10 ⁻⁴ (int) 8.83 × 10 ⁻⁵ (edg)	(10)	0.159 (edge) 0.0759 (corner) 8.79×10^{-5} (int) 4.27×10^{-5} (edg)	(10)
		$6.70 \times 10^{-5} \text{ (cor)}$		$2.07 \times 10^{-5} \text{ (cor)}$	a ontinua J

continued

TABLE K.1 (continued)

Key Characteristics of the Nine Mile Point 2 General Electric BWR-5 with GE11 Fuel and of the Seabrook Station PWR

Parameters	Units	BWR	Sources	PWR	Sources
Core average subchannel mass	$kg m^{-2} s^{-1}$	1625 (int)	(11)	3807 (int)	(11)
flux, $G_{\rm ch}$		1514 (edg)		3734 (edg)	
		1378 (cor)		3661 (cor)	

- ^a Effective flow rate for heat transfer (total minus: flow through thimble tubes, leakage from barrel-baffle into core, head cooling flow, leakage to the vessel outlet nozzle).
- b Assuming all the fuel rods being full-length rods.
- Many PWRs now reload about 4.5%
- d Typically USA BWRs and PWRs now operate on 24- and 18-month cycle lengths.

References

- A Nine Mile Point 2 Nuclear Plant, Updated Safety Analysis Report, Table 4.4-1, USAR Revision 8, Oswego, New York, November 1995.
- B 2009 World Nuclear Industry Handbook, Wilmington Media, Kent, United Kingdom, 2009.
- C Typical BWR value.
- D Anonymous, Fuel design data, *Nuclear Engineering International*, 52, 638, Sciences Module, p.32, Sept 2007.
- E General Electric Company, Retransmittal of Response to Request for Additional Information (RAI) for ESBWR Pre-application Review, San Jose, CA, 2003.
- F Watford, G. A., GE 10 × 10 Advanced BWR fuel design, ANS topical meeting on Advances in Nuclear Fuel Management II, Myrtle Beach, SC, 1997.
- G Ferroni, P., Hejzlar, P., and Todreas N., Compilation of Thermal–hydraulic and geometric data of the Seabrook Nuclear Power Plant, Unpublished, 2006.
- H BWR/6, General Description of a Boiling Water Reactor, General Electric Co., San Jose, CA, revised 1980.
- I Author's best estimate.

Calculations

(1)
$$\eta = \frac{\text{Net electric power}}{\text{Thermal power}}$$

(2) $T_{\text{exit}} = T_{\text{sat}}$ ($p = 7.03 \, MPa$). Saturation temperature of water at the steam dome pressure.

(3) Average core power density =
$$\frac{\text{Thermal power}}{L\frac{\pi}{4}(\text{active core equivalent diameter})^2}$$

(4)
$$t(UO_2) = \frac{t(HM)}{f_{HM}}$$

The heavy metal fraction is given by Equation 2.21:

$$f_{\rm HM} = \frac{rM_{\rm ff} + (1 - r)M_{\rm nf}}{rM_{\rm ff} + (1 - r)M_{\rm nf} + M_{\rm O_2}} \tag{2.21}$$

The values in Table K.1 are obtained using the average reload enrichments for BWRs and PWRs.

TABLE K.1 (continued)

Key Characteristics of the Nine Mile Point 2 General Electric BWR-5 with GE11 Fuel and of the Seabrook Station PWR

(5)
$$\dot{m}_{\rm a} = \frac{\left(1 - 0.10 - 0.04\right) \times \dot{m}_{\rm core}}{N_{\rm a}} = \frac{0.86 \times \dot{m}_{\rm core}}{N_{\rm a}} = \frac{0.86 \times 13671}{764} = 15.39 \,\mathrm{kg/s},$$

assuming 10% core bypass flow and 4% flow through the water rods.

(6)
$$A_{\text{fa}} = (l_{\text{ch}})^2 - N_{\text{wr}} \frac{\pi (D_{\text{wr}})^2}{4} - N_{\text{rods}} \frac{\pi (D)^2}{4}$$

= $0.1341^2 - 2 \frac{\pi 0.0249^2}{4} - 74 \frac{\pi 0.0112^2}{4} = 9.718 \times 10^{-3} \text{ m}^2$

(7)
$$G_a = \frac{\dot{m}_a}{A_{fa}} = \frac{15.39}{9.718 \times 10^{-3}} = 1584 \frac{\text{kg}}{\text{m}^2 \text{ s}}$$

(8)
$$t_{\text{gap}} = \frac{D - D_f - 2t_{\text{clad}}}{2} = \frac{11.20 - 9.60 - 2 \times 0.71}{2} = 0.09 \text{ mm}$$

- (9) Calculated using equation 4.114 (*Nuclear Systems Vol. II*, p. 154), using n = 0.2 and considering for BWR four different types of channels (50 interior channels, 32 edge, 4 corner and 1 near water rods) and for PWR five types (156 interior, 64 edge, 4 corner, 4 near the instrumentation tube, 96 near the 24 guide tubes). From source G, the instrumentation tube diameter is 12.29 mm and the guide tube diameter is 11.58 mm.
- (10) $A_{\text{fch}} = P^2 \frac{\pi D^2}{4}$

$$(11) \quad G_{\rm ch} = \frac{\dot{m}_{\rm ch}}{A_{\rm coh}}$$

(12)
$$T_{\text{exit}} = T_{\text{in}} + \Delta T_{\text{core}} = 293.1 + 33.7 = 326.8$$
°C, where $\Delta T_{\text{core}} = 33.7$ °C from source G.

(13)
$$\dot{m}_a = G_a A_{fa} = 3675.4 \times 2.444 \times 10^{-2} = 89.83 \text{ kg/s}$$

Note: $\dot{m}_a N_a = 89.83 \times 193 = 17365 \,\mathrm{kg/s} \cong 99\% \,\dot{m}_{\mathrm{core}}$. The two core flows are different because of the water flow between the assemblies.

(14) Using the data about guide tubes and the instrumentation tube cited in (9):

$$A_{fa} = l_{ch}^2 - \frac{\pi}{4} \left(N_{gt} D_{gt}^2 + N_{it} D_{it}^2 + N_{rods} D^2 \right)$$

$$= 0.214^2 - \frac{\pi}{4} \left(24 \times 0.01158^2 + 1 \times 0.01229^2 + 264 \times 0.0095^2 \right)$$

$$= 2.444 \times 10^{-2} \text{ m}^2$$

$$(15) \quad Q^{\rm M} = \frac{\dot{Q}_{\rm th}}{f_{\rm HM} M_{\rm fc}}$$

where \dot{Q}_{th} = reactor thermal power

 $f_{\rm HM}$ = heavy metal fraction of core fuel material

 $M_{\rm fc}$ = mass of fuel material in the core