4. Suppose that X, Y are independent exponential random variables with parameter λ.
(3 marks) (a) Find $P(X<2 Y)$.
(4 marks) (b) For $a>0$, find $P(X>a \mid X<2 Y)$. What is the conditional distribution (give the name and any parameter(s)) of X given that $X<2 Y$?
(3 marks) (c) Which of the following is a correct formula for $E\left(X^{2} \mid X>1\right)$?
$E\left[(X+1)^{2}\right],(E X+1)^{2}, E X^{2}+1$.
Give a brief reason for your answer.

4(a) $p(x<2 Y)$

$$
\begin{aligned}
& =\int_{0}^{\infty} \int_{0}^{2 y} \lambda e^{-\lambda x} \lambda e^{-\lambda y} d x d y \\
& =\iint \lambda^{2} e^{-\lambda y} e^{-\lambda x} d x d y \\
& =\int \lambda^{2} e^{-\lambda y} \int_{0}^{2 y} e^{-\lambda x} d x d y \\
& \int^{2} y
\end{aligned}
$$

$$
\begin{aligned}
& \lambda\left[\int e^{-\lambda y} d y-\int e^{-3 \lambda y} d y\right] \\
= & \lambda\left[\frac{e^{-\lambda y}}{-\lambda}+\left.\left(\frac{e^{-3 \lambda y}}{13 \lambda}\right)\right|_{y=0} ^{y=\infty}\right. \\
= & {\left.\left[-e^{-\lambda y}+\frac{e^{-3 \lambda y}}{3}\right]\right|_{y=0} ^{y=\infty} }
\end{aligned}
$$

(17) $\int_{0}^{2 y} e^{-\lambda x} d x$

$$
=0-\left(e^{\theta}+\frac{1}{3}\right)
$$

$=\left.\frac{e^{-\lambda x}}{-\lambda}\right|_{x=0} ^{x=2 y}$ $=1-\frac{1}{3}=\frac{2}{3}$

$$
\begin{aligned}
& =\frac{e^{-\lambda(2 y)}}{-\lambda}+\frac{e^{-\lambda(0)}}{t \lambda} \\
& =\frac{1}{\lambda}-\frac{e^{-\lambda 2 y}}{\lambda}=\left(\frac{1-e^{-2 \lambda y}}{\lambda}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P(x<2 g) \\
= & \left.\int \lambda^{2} e^{-\lambda y}\right)\left(\frac{1 e^{-2 \lambda y}}{\lambda}\right) d y \\
= & \int \lambda e^{-\lambda y}\left(1-e^{-2 \lambda y}\right) d y \\
= & \lambda e^{-\lambda y}\left(1-e^{-2 \lambda y}\right) d y \\
= & \lambda \int e^{-\lambda y}-e^{-2 \lambda y} e^{-\lambda y} d y
\end{aligned}
$$

$$
P(A \mid B) P(B)=P(A \cap B)
$$

4(b)

$$
\begin{aligned}
& \left.\begin{array}{ll}
P(x>a \mid x<2 Y) & =\frac{e^{-2 y \lambda}}{-\lambda}+\frac{e^{-\lambda a}}{\lambda} \\
=\frac{P(A \cap B)}{P(B)} \\
=\frac{P(x) a, x<2 Y)}{P(x<2 \gamma)} & =\left(\frac{e^{-\lambda a}-e^{-2 y \lambda}}{\lambda}\right.
\end{array}\right)
\end{aligned}
$$

$$
=\frac{p(a<x<2 H)}{p(x<2 Y)}
$$

$$
P(a \times x<2 y)=
$$

$P(a<x<2 y)=$
$\int^{\infty} \lambda^{2} e$

$$
\begin{aligned}
& p(a<x<2 Y) \\
= & \int_{0}^{10} \int_{a}^{2 y} \lambda e^{-\lambda x} \lambda e^{-\lambda y} d x d y \\
= & \int_{0}^{x} \int_{0}^{2 y}\left(\lambda^{2} e^{-\lambda y}\right) e^{-1 x} d x d y
\end{aligned}
$$

$$
=\int_{0}^{\lambda^{+}} e^{-\lambda y} \sqrt{\int_{a}^{2 y}} e^{-\lambda x} d x d y
$$

$$
\begin{aligned}
& =\int_{0}^{\infty} \lambda e^{-\lambda y}\left(e^{-\lambda a}-e^{-2 y \lambda}\right) d y \\
& =\lambda \int_{0}^{\infty} e^{-\lambda y-\lambda a}-e^{-\lambda y-2 y \lambda \lambda} d y \\
& =\lambda \int_{0}^{\infty} e^{-\lambda a} \cdot e^{-\lambda y}-e^{-3 y \lambda} d y
\end{aligned}
$$

(A) $\int_{a}^{0} 2 y e^{-\lambda x} d x$

$$
=\lambda\left[\int_{0}^{\infty} e^{-\lambda a} e^{-\lambda y} d y-\int e^{-3 y \lambda} d y\right]
$$

$=\left.\frac{e^{-\lambda x}}{-\lambda}\right|_{x=a} ^{x=2 y}$
(B) $e_{0}^{\tan ^{\infty}} e^{-\lambda y} d y$

$$
=\frac{e^{-\lambda(2 y)}}{-\lambda}+\left(\frac{e^{-\lambda(a)}}{+\lambda}\right)=e^{-\lambda a}\left|\frac{e^{-\lambda y}}{-\lambda}\right|_{0}^{\infty}=\frac{e^{-\lambda a}\left(0+\frac{1}{\lambda}\right)}{\frac{e^{-\lambda a}}{\lambda}}
$$

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-3 y \lambda \lambda} d y \\
& =\left.\frac{e^{-3 y \lambda}}{-3 \lambda}\right|_{0} ^{\infty} \\
& =0+\frac{1}{+3 \lambda} \\
& =\frac{1}{3 \lambda} \\
& \therefore P(a<x<2 y)= \\
& \lambda\left(\frac{e^{-\lambda a}}{\lambda}-\frac{1}{3 \lambda}\right) \\
& =\frac{e^{-\lambda a}-\frac{1}{3}}{1} \\
& \frac{p(a<x<2 y)}{p(x<2 y)}=\left(e^{-x a}-\frac{1}{3}\right)\left(\frac{3}{2}\right) \\
& =\frac{3}{2} e^{-x a}-\frac{1}{2}
\end{aligned}
$$

fcc) $\mathbb{E}\left[x^{2} \mid x>1\right]$
Due to memoryless properly of exponential distribution

$$
\mathbb{E}\left[x^{2} \mid x>1\right]=\mathbb{E}\left[x^{2}\right]+1
$$

