Michael Cho

# Budget: \$15

Solved!

If functions f(x) and g(x) are continuous everywhere and f(1) = 2, f(3) = -4, f(4) = 8, g(0) = 4, g(3) = -6 and g(7) = 0 then lim (f + g)(x) as x approaches 3 is equal to a. -10 b. -11 c. cannot find a value for the above limit since only values of the functions are givenIf functions f(x) and g(x) are continuous everywhere and f(1) = 2, f(3) = -4, f(4) = 8, g(0) = 4, g(3) = -6 and g(7) = 0 then lim (f + g)(x) as x approaches 3 is equal to a. -10 b. -11 c. cannot find a value for the above limit since only values of the functions are givenIf functions f(x) and g(x) are continuous everywhere and f(1) = 2, f(3) = -4, f(4) = 8, g(0) = 4, g(3) = -6 and g(7) = 0 then lim (f + g)(x) as x approaches 3 is equal to a. -10 b. -11 c. cannot find a value for the above limit since only values of the functions are givenIf functions f(x) and g(x) are continuous everywhere and f(1) = 2, f(3) = -4, f(4) = 8, g(0) = 4, g(3) = -6 and g(7) = 0 then lim (f + g)(x) as x approaches 3 is equal to a. -10 b. -11 c. cannot find a value for the above limit since only values of the functions are givenIf functions f(x) and g(x) are continuous everywhere and f(1) = 2, f(3) = -4, f(4) = 8, g(0) = 4, g(3) = -6 and g(7) = 0 then lim (f + g)(x) as x approaches 3 is equal to a. -10 b. -11 c. cannot find a value for the above limit since only values of the functions are givenIf functions f(x) and g(x) are continuous everywhere and f(1) = 2, f(3) = -4, f(4) = 8, g(0) = 4, g(3) = -6 and g(7) = 0 then lim (f + g)(x) as x approaches 3 is equal to a. -10 b. -11 c. cannot find a value for the above limit since only values of the functions are givenIf functions f(x) and g(x) are continuous everywhere and f(1) = 2, f(3) = -4, f(4) = 8, g(0) = 4, g(3) = -6 and g(7) = 0 then lim (f + g)(x) as x approaches 3 is equal to a. -10 b. -11 c. cannot find a value for the above limit since only values of the functions are givenIf functions f(x) and g(x) are continuous everywhere and f(1) = 2, f(3) = -4, f(4) = 8, g(0) = 4, g(3) = -6 and g(7) = 0 then lim (f + g)(x) as x approaches 3 is equal to a. -10 b. -11 c. cannot find a value for the above limit since only values of the functions are givenIf functions f(x) and g(x) are continuous everywhere and f(1) = 2, f(3) = -4, f(4) = 8, g(0) = 4, g(3) = -6 and g(7) = 0 then lim (f + g)(x) as x approaches 3 is equal to a. -10 b. -11 c. cannot find a value for the above limit since only values of the functions are given

Tutor Jack Kim

The answer is a. lim (f + g)(x) = lim f(x) + lim g(x) and since the two functions...

Notes
Practice
Earn
Me

OR

Don't have an account?

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Join to view

OR

By registering, I agree to the Terms and Privacy Policies
Just a few more details

So we can recommend you notes for your school.