0
answers
0
watching
73
views
20 Nov 2019

A Particle in a box
In order to answer the following questions you will need toconsideran infinite potential
well of length L, in which a particle has been confined.



1. For principal quantum number n=7, write code to calculatethenormalization constant.
Then, plot the probability density function for this state (usingL= 10).
2. Using the properly normalized wave equation from Question1,write code to determine
the expectation values <x> and <x2> . Is <x>oneof the most probable positions? Explain
why.
3. Using the properly normalized wave equation from Question1,write code to determine
the expectation values <p> and <p2> . Show the valueyouobtain for <p2> is equal to
2mE7 (where E7 is the energy of the n = 7 level). Remember that pisa differential
operator so you will have to use the diff command.
4. The uncertainty of a quantum measurement is defined on page222,Equation 6.41 (3rd
edition SMM). Using this equation calculate the uncertainties oftheposition and
momentum of a particle in the n = 5 state. Compute the productofthese uncertainties and
compare this with the prediction of the Heisenberguncertaintyprinciple.
Quantum oscillator
5. Repeat calculations in the previous question for the groundstatewave function of the
quantum oscillator. Comment on the obtained result.

For unlimited access to Homework Help, a Homework+ subscription is required.

Weekly leaderboard

Start filling in the gaps now
Log in