1
answer
0
watching
84
views

A nylon string has mass 5.50 g and length L = 86.0 cm. The lower end is tied to the floor, and the upper end is tied to a small set of wheels through a slot in a track on which the wheels move (Fig. P18.76). The wheels have a mass that is negligible compared with that of the siring, and they roll without friction on the track so that the upper end of the string is essentially free. Figure P18.76 At equilibrium, the string is vertical and motionless. When it is carrying a small-amplitude wave, you may assume the string is always under uniform tension 1.30 N. (a) Find the speed of transverse waves on the siring, (b) The string's vibration possibilities are a set of standing-wave states, each with a node at the fixed bottom end and an antinode at the free top end. Find the node-antinode distances for each of the three simplest states, (c) Find the frequency of each of these states.

 

For unlimited access to Homework Help, a Homework+ subscription is required.

Analyn Tolentino
Analyn TolentinoLv10
25 Jan 2021

Unlock all answers

Get 1 free homework help answer.
Already have an account? Log in

Related textbook solutions

Related questions

Weekly leaderboard

Start filling in the gaps now
Log in