%I
%S 1,1,2,2,2,3,4,3,2,3,4,4,5,7,7,4,2,3,4,4,5,7,7,5,5,7,8,9,12,14,11,5,2,
%T 3,4,4,5,7,7,5,5,7,8,9,12,14,11,6,5,7,8,9,12,14,12,10,12,15,17,21,26,
%U 25,16,6,2,3,4,4,5,7,7,5,5,7,8,9,12,14,11,6,5,7,8,9,12,14,12,10,12,15,17,21,26
%N When A151552 is written as a triangle the rows converge to this.
%F a(n)=A151553(n1), n>0. [From _R. J. Mathar_, Jul 07 2009]
%e Contribution from _Omar E. Pol_, Jun 09 2009: (Start)
%e Triangle begings:
%e 1;
%e 1;
%e 2,2;
%e 2,3,4,3;
%e 2,3,4,4,5,7,7,4;
%e 2,3,4,4,5,7,7,5,5,7,8,9,12,14,11,5;
%e 2,3,4,4,5,7,7,5,5,7,8,9,12,14,11,6,5,7,8,9,12,14,12,10,12,15,17,21,26,25,16,6;
%e 2,3,4,4,5,7,7,5,5,7,8,9,12,14,11,6,5,7,8,9,12,14,12,10,12,15,17,21,26,...
%e (End)
%p G := 1 + x*(1+x)*mul( 1 + x^(2^n1) + x^(2^n), n=1..20);
%Y Cf. A151552m A151553, A000079.
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Jun 08 2009
