You are a planetary scientist studying the atmosphere of Jupiter through a large telescope when you observe an asteroid approaching the planet. This asteroid is large, so you know it is held together by gravity rather than the cohesive forces that hold a large rock together. If the asteroid gets too close to Jupiter, the massive tidal forces will tear it apart, scattering small particles that will add to the ring system. You have calculated the closest distance the asteroid will come to Jupiter.

A measure of the cohesive gravitational force holding such an asteroid together is the gravitational field on the surface due to the mass of the asteroid. This field is independent of the distance of the asteroid from Jupiter. Calculate the gravitational field at the surface of the asteroid due only to the mass of the asteroid. Assume the asteroid has a diameter of 10,000 km and a density of 1300 kg/m^{3}.

You are a planetary scientist studying the atmosphere of Jupiter through a large telescope when you observe an asteroid approaching the planet. This asteroid is large, so you know it is held together by gravity rather than the cohesive forces that hold a large rock together. If the asteroid gets too close to Jupiter, the massive tidal forces will tear it apart, scattering small particles that will add to the ring system. You have calculated the closest distance the asteroid will come to Jupiter.

A measure of the cohesive gravitational force holding such an asteroid together is the gravitational field on the surface due to the mass of the asteroid. This field is independent of the distance of the asteroid from Jupiter. Calculate the gravitational field at the surface of the asteroid due only to the mass of the asteroid. Assume the asteroid has a diameter of 10,000 km and a density of 1300 kg/m^{3}.