Study Guides
(238,613)

Canada
(115,253)

Ryerson University
(8,007)

Finance
(313)

FIN 300
(122)

Scott Anderson
(30)

# study guide

Unlock Document

Ryerson University

Finance

FIN 300

Scott Anderson

Summer

Description

CHAPTER 13 RETURN, RISK, AND THE SECURITY MARKET LINE Answers to Concepts Review and Critical Thinking Questions 1. Some of the risk in holding any asset is unique to the asset in question. By investing in a variety of assets, this unique portion of the total risk can be eliminated at little cost. On the other hand, there are some risks that affect all investments. This portion of the total risk of an asset cannot be cost-lessly eliminated. In other words, systematic risk can be controlled, but only by a costly reduction in expected returns. 2. If the market expected the growth rate in the coming year to be 2 percent, then there would be no change in security prices if this expectation had been fully anticipated and priced. However, if the market had been expecting a growth rate different than 2 percent and the expectation was incorpo- rated into security prices, then the governments announcement would most likely cause security prices in general to change; prices would drop if the anticipated growth rate had been more than 2 percent, and prices would rise if the anticipated growth rate had been less than 2 percent. 3. a. systematic b. unsystematic c. both; probably mostly systematic d. unsystematic e. unsystematic f. systematic 4. a. a change in systematic risk has occurred; market prices in general will most likely decline. b. no change in unsystematic risk; company price will most likely stay constant. c. no change in systematic risk; market prices in general will most likely stay constant. d. a change in unsystematic risk has occurred; company price will most likely decline. e. no change in systematic risk; market prices in general will most likely stay constant. 5. No to both questions. The portfolio expected return is a weighted average of the asset returns, so it must be less than the largest asset return and greater than the smallest asset return. 6. False. The variance of the individual assets is a measure of the total risk. The variance on a well- diversified portfolio is a function of systematic risk only. 7. Yes, the standard deviation can be less than that of every asset in the portfolio. However, cannot be p less than the smallest beta because p is a weighted average of the individual asset betas. 8. Yes. It is possible, in theory, to construct a zero beta portfolio of risky assets whose return would be equal to the risk-free rate. It is also possible to have a negative beta; the return would be less than the risk-free rate. A negative beta asset would carry a negative risk premium because of its value as a diversification instrument. 9. Such layoffs generally occur in the context of corporate restructurings. To the extent that the market views a restructuring as value-creating, stock prices will rise. So, its not layoffs per se that are being 125 www.notesolution.com cheered on. Nonetheless, Bay Street does encourage corporations to takes actions to create value, even if such actions involve layoffs. 10. Earnings contain information about recent sales and costs. This information is useful for projecting future growth rates and cash flows. Thus, unexpectedly low earnings often lead market participants to reduce estimates of future growth rates and cash flows; price drops are the result. The reverse is often true for unexpectedly high earnings. Solutions to Questions and Problems NOTE: All end of chapter problems were solved using a spreadsheet. Many problems require multiple steps. Due to space and readability constraints, when these intermediate steps are included in this solutions manual, rounding may appear to have occurred. However, the final answer for each problem is found without rounding during any step in the problem. Basic 1. The portfolio weight of an asset is total investment in that asset divided by the total portfolio value. First, we will find the portfolio value, which is: Total value = 70($40) + 110($22) = $5,220 The portfolio weight for each stock is: Weight A 70($40)$5,220 = .5364 Weight B 110($22)$5,220 = .4636 2. The expected return of a portfolio is the sum of the weight of each asset times the expected return of each asset. The total value of the portfolio is: Total value = $1,200 + 1,900 = $3,100 So, the expected return of this portfolio is: E(R p = ($1,200$3,100)(0.11) + ($1,900$3,100)(0.16) = .1406 or 14.06% 3. The expected return of a portfolio is the sum of the weight of each asset times the expected return of each asset. So, the expected return of the portfolio is: E(R p = .50(.11) + .30(.17) + .20(.14) = .1340 or 13.40% 4. Here we are given the expected return of the portfolio and the expected return of each asset in the portfolio, and are asked to find the weight of each asset. We can use the equation for the expected return of a portfolio to solve this problem. Since the total weight of a portfolio must equal 1 (100%), the weight of Stock Y must be one minus the weight of Stock X. Mathematically speaking, this means: E(R p = .122 = .14w X .09(1 w ) X We can now solve this equation for the weight of Stock X as: .122 = .14w X .09 .09w X 126 www.notesolution.com

More
Less
Related notes for FIN 300