Study Guides (248,390)
Canada (121,508)
Biology (1,112)
BIOL 241 (60)

BIOL 241 - Introduction to Applied Microbiology Lab Notes

9 Pages
184 Views
Unlock Document

Department
Biology
Course
BIOL 241
Professor
Vivian Dayeh
Semester
Winter

Description
BIOL  241L  –  Introduction  to  the  Microbial  World     Experiment  1:  Direct  Microscopic  Count  of  Microorganisms  in  Milk   − Microbial  population  of  milk  is  typically  composed  of  Gram -­‐positive,  non-­‐motile,   microaerophilic  or  anaerobic  rods  and  cocci   − Lactobacillus,  Micrococcus  and  Steptococcus  are  typically  represented   − Microbial  content  can  be  determined  by  microscopic  examination  of  a  stained  film  of  a  milk   sample  using  a  direct  count  method   − Advantages:   o Results  are  quickly  available   o Can  count  clumps  and  individual  bacteria   o Minimal  equipment  required   o Allows  you  to  determine  morphology   o Slides  can  be  kept   − Disadvantages:   o Counts  can’t  be  made  accurately  on  low -­‐count  milk   o Dead  cells  present  in  pasteurized  milk  are  counted   o Continuous  microscopic  examinations   are  tiring   o Cells  may  be  difficult  to  discern   o Debris  may  be  confused  with  bacterial  cells   − Milk  samples  vortexed  to  disperse  organisms  and  break  up  clumps  of  bacteria   − SlideBrite  is  used  to  remove  fat  globules   − Slide  stained  with  Methylene  Blue,  decolourized  w ith  ethanol     Calibration  of  Microscope:  Microscope  Factor   − Microscope  Factor  (MF) :  relationship  of  the  field  to  a  mL   − Measure  the  diameter  of  the  microscope  field   –  each  space  =  0.01mm   − Use  πr  to  calculate  the  area  in  mm   − Convert  this  area  to  cm  by  dividing  by  100   − Divide  1  cm  by  the  area  of  the  field  to  calculate  the  number  of  fields/cm   − MF  =  fields/cm  /  0.005  mL/cm     Experiment  2:  Standard  Plate  Count  of  Milk   − Standard  Plate  Count  (SPC)  is  an  agar-­‐plate  method  for  estimating  bacterial  populatio ns   o Official  method  for  determining  sanitary  quality  of  milk   o Uses  serial  dilutions  and  the  spread  plate  technique,  or  the  pour -­‐plate  technique   − Each  colony  is  assumed  to  have  arisen  from  an  individual  bacterial  cell   − Total  number  of  colonies  formed  is  equival ent  to  the  number  of  viable  microorganisms   − Serial  dilutions  reduce  the  population  to  ensure  that  a  sample  will  be  obtained  that  will   produce  separate  and  distinct  colonies   − Advantages:   o Counts  only  viable  microorganisms   o Accurate  for  use  with  low -­‐count  milk   − Disadvantages:   o Detects  only  organisms  capable  of  growing  under  specific  conditions   o Colonies  may  have  arisen  from  single  cells  or  a  clump  of  cells   − Should  be  considered  as  providing  only  an  estimate  of  the  total  population   − Quebec  Colony  Counter  used  to  count  colonies   o CFU/mL  =  number  of  colonies  x  dilution  factor     Experiment  3:  Microbial  Analysis  of  Cheese   − Cheese  is  the  result  of  microbial  metabolic  activity   − Streptococcus  and  Lactobacillus  produce  lactic  acid  that  is  responsible  for  acidification  of   milk  and  the  cheese  flavours   − Other  microbial  enzymes  cause  the  curd  (protein  molecules)  to  separate  from  the  whey   (liquid  portion)   o Curd  is  further  processed  to  become  cheese  product   − Three  groups  of  cheese:   o Soft,  acid-­‐curd  cheese  –  cottage  cheese,  cream  cheese   o Hard,  rennet-­‐curd  cheese  –  Swiss  cheese,  cheddar  cheese   o Semisoft,  rennet-­‐curd  cheese  -­‐-­‐  Camembert   − Clostridium  and/or  coliform  bacteria  (Escherichia  coli,  Enterobacter  aerogenes )  produce  gas   that  can  cause  defects  in  cheddar  cheese   − Spoilage  may  result  from  “dairy  mold”  in  cured  cheeses   − Geotrichum,  Cladosporium  and  Penicillium  may  grow  on  the  surface  or  in  crevices  of  cheese   and  give  it  an  off-­‐flavour   − EMB  agar  –  differentiates  coliforms  like   E.  coli   − Malt  Extract  agar  plates   –  pH  =  5.4,  used  to  detect  mold  growth,  high  sugar  content   − APT  agar  –  selects  for  lactic-­‐acid  bacteria     Experiment  4:  Food  Illnesses  Caused  by   Staphylococci  and  Salmonellae   − Staphylococcus  aureus  can  enter  food  and  excrete  a  heat  stable  exotoxin  that  may  lead  to   food  poisoning   − Salmonella  infections  involve  liberation  of  endotoxins  from  LPS  in  the  outer  membrane   − Small  numbers  of  Salmonella  are  found  in  food  products  so  enrichment  steps  are  necessary   o Selenite-­‐Cystine,  Tetrathionate  Brilliant  Green  enrichment  broths  and  Brilliant   Green  Sulfa  and  MacConkey  agars  used   − Large  numbers  of  Staphylococci  are  required  to  produce  food  poisoning   − Usually  in  food  poisoning  outbreaks,  only  one  organism  is  the  etiologic  agent   − Staphylococcus  110  agar  plates  –  select  for  Staphylococcus;  pathogenic  strains:  orange  to   pale  yellow  (Staphylococcus  aureus);  non-­‐pathogenic  strains:  white  ( Staphylococcus   epidermidis)   − Brain  Heart  Infusion  Broth   –  enriches  Staphylococcus   − MacConkey  agar  plate   –  purifies  Salmonella  to  get  a  clonal  population;  differentiates  between   lactose  fermenters  and  non-­‐lactose  fermenters   o Salmonella  does  not  ferment  lactose,  so  it  will  be  transparent  to  pink  in  colour   − Triple  Sugar  Iron  (TSI)  slant   –  isolates  Salmonella  based  on  the  ability  to  ferment  glucose,   sucrose,  dextrose;  produces 2  H S  on  slant   o Can’t  use  lactose  or  sucrose;  slant  should  become  more  red  (negative)   o Utilizes  dextrose  to  produce  yellow  butt  with/without  gas  formation  (black  is  very   positive)   o Blackening  of  butt  extending  into  slan2  rom  H Sproduction  (positive)   o Gas  pockets  appear  in  medium  (positive)   − Coagulase:  enzyme  that  produces  a  clot   o Relationship  between  strains  capable  of  producing  this  enzyme  and  producing   exotoxins     Experiment  5:  Determination   of  Coliforms  in  Water  by  the  Most -­‐Probable-­‐Number  Method   (MPN  Test)   − Sanitary  quality  of  water  is  primarily  determined  by  the  kinds  of  microorganisms  present   − Coliform  bacteria  are  used  as  indicators  since  sewage  always  contains  them  in  large  number   and  they  can  be  detected  quickly/easily   o Most  are  non-­‐pathogenic  so  they  indicate  the  presence  of  fecal  matter,  not  harmful   microorganisms   − Presumptive  test:  inoculate  known  amount  of  water  sample  into  multiple  lauryl  tryptose   broth  tubes   o If  gas  is  produced,  the  water  is  assumed  to  be  contaminated  with  fecal  matter  and  is   unsafe  to  drink   − Confirmed  test:  loopful  from  positive  presumptive  test  tube  inoculated  into  brilliant  green   lactose  bile  broth,  which  is  more  selective  for  coliform  detection   o Positive  if  gas  produced   − Alternative  confirmed  test:  streak  culture  from  positive  presumptive  test  tube  onto  Eosin   Methylene  Blue  (EMB)  Agar  or  Endo  agar   o Typical  coliforms  are  green  metallic  sheen  ( E.  coli)  or  pink  colonies  with  dark  center   (E.  aerogenes)   o If  they  form,  indicates  that  gas  was  likely  produced  by  coliforms   o E.  coli  is  the  more  reliable  sewage  indicator  though,  as  it  is  not  normally  present  in   soil   − Completed  test:  typical  coliform  colony  inoculated  into  lauryl  tryptose  broth  and  a  Gram   stain  is  conducted  after  incubation   o If  organisms  selected  are  gram  negative  and  non -­‐spore-­‐forming  bacilli  and  they   produced  acid  and  gas  from  lactose,  it  is  a  positive  test;  indicates  that  the  organisms   are  coliforms   − Most  probable  number  of  coliforms  present  can  be  estimated  by  use  of  the  MPN  index     Experiment  6:  Determination  of  Coliform  Numbers  in  Water  by  the  Membrane  Filter   Technique   − Endo  medium  promotes  the  growth  of  coliforms  and  discourages  the  growth  of  most  other   species  of  bacteria   o Otherwise,  these  organisms  would  overgrow  the  test  filter  and  mask  the  presence  of   any  coliform  colonies   − Coliforms  can  break  down  lactose  to  produce  simpler  substances,  including  aldehydes   o Endo  medium  contains  lactose  and  other  nutrients,  as  well  as  bas ic  fuchsin,  which   reacts  with  the  aldehydes  to  produce  a  shiny  green  complex   − Total  coliforms:  organisms  which  ferment  lactose,  produce  acid  and  gas  within  48  h  at   O 35 C,  or  which  form  colonies  with  a  green  sheen  on  membrane  filters  using  Endo  broth   when  incubated  under  those  conditions   − Fecal  coliforms:  coliform  organisms  able  to  grow  and  ferment  lactose  with  the  production   of  acid  and  gas  or  to  produce  blue  colonies  on  membrane  filters  using  m -­‐FC  broth  when   incubated  at  44.5 C  for  24  h.   o More  indicative  of  fe cal  pollution  by  man  and  other  warm -­‐blooded  animals  than   total  coliform  counts   − Membrane  filter  technique  advantages:   o Greater  sensitivity  because  larger  volumes  of  water  can  be  tested   o Higher  degree  of  reproducibility  of  results   o Shorter  time  to  obtain  results,  since  it  doesn’t  require  confirmed/completed  tests   − Disadvantages:   o Water  must  be  free  from  extraneous  matter  (ex.  cyanobacteria)  since  it  can  plug  up   the  filter  quickly   − Millipore  filter  must  be  screwed  on   − Pal  filter  (used  in  the  lab)  is  magnetic     Experiment  7:  Comparison  of  Colony  Appearance  of  Coliforms  and  Other  Bacteria  Grown  on   EMB  and  Endo  Agars   − Differential  media  as  E.  coli  develops  distinctive  colonies  on  them   − Some  other  bacteria  grow  readily  on  the  media  but  produce  colonies  that  look  different  from   typical  E.  coli  colonies   − Other  microorganisms  may  have  their  growth  inhibited           Expected  Results:   Model  Organism   EMB  Agar   Endo  Agar   Nutrient  Agar   Escherichia  coli   ++   +++   ++   green,  metallic   dark  pink,  green   metallic   Salmonella   +   ++   +   typhimurium   colourless   pale  pink   Pseudomonas   +   +   +   aeruginosa   colourless   pale  pink   fluorescent,  green   Citrobacter  freundii   ++   +++   +   green,  metallic   dark  pink,  metallic   Bacillus  subtilis   -­‐   -­‐   +   irregular  margin   Staphylococcus  aureus   -­‐   -­‐   +   yellow     Experiment  8:  The  IMViC  Test   − Developed  to  separate  various  types  of  coliforms,  specifically   Escherichia  coli  and   Enterobacter  aerogenes   − I  =  indole  test   o Tryptone  broth  is  rich  in   tryptophan,  which  can  be  hydrolyzed  by  organisms  that   produce  the  enzyme  tryptophanase  to  produce   indole,  pyruvic  acid,  and  ammonia   o Bacteria  utilize  pyruvic  acid  and  ammonia,  but  can’t  use  indole   o Kovak’s  reagent  forms  a  red  complex  with  the  indole  ring  in  a  positive  test;   negative,  it  remains  yellow   − M  =  methyl  red  test   o E.  coli  ferments  glucose  to  acidic  end  products,  creating  a  pH  below  4.5   o Other  bacteria  utilize  the  peptone,  forming  ammonia  and  producing  a  basic   environment   o Methyl  red  is  a  pH  indicator  that  is  red  below  4.5  (positive)  and  yellow  above  that   (negative)   − Vi  =  Voges-­‐Proskauer  reaction     o Detects  production  of  acetylmethylcarbinol  ( acetoin)  from  sugar  fermentation   o Positive  test  indicated  by  development  of  cherry  red  colour   o Negative  is  indicated  by   brown  colour   − C  =  citrate  test   o Sodium  citrate  is  the  carbon  source   o If  bacteria  can  utilize  that,  the  pH  becomes  basic  and  changes  the   bromothymol   blue  indicator  from  green  to  blue   o Green  is  a  negative  test     Expected  Results   Organism   Indole   Methyl  Red     Voges-­‐Proskauer   Citrate   Escherichia  coli   +   +   -­‐   -­‐   red   red   brown   green   Enterobacter   -­‐   -­‐   +   +   aerogenes   yellow   yellow   red   blue   Citrobacter   -­‐   +   -­‐   +   freundii   yellow   red   brown   blue     Experiment  9:  Determination  of  Chlorine  Demand   − Chlorine  is  used  to  purify   water  as  effective  concentrations  kill  microorganisms  but  are  not   toxic  to  higher  life  forms   − Solutions  containing  chlorine  depend  on  liberation  of  free  chlorine  and  oxidation  of  enzymes   and  proteins  by  nascent  oxygen  for  effectiveness   o Hypochlorite  à  hypochl
More Less

Related notes for BIOL 241

Log In


OR

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Sign up

Join to view


OR

By registering, I agree to the Terms and Privacy Policies
Already have an account?
Just a few more details

So we can recommend you notes for your school.

Reset Password

Please enter below the email address you registered with and we will send you a link to reset your password.

Add your courses

Get notes from the top students in your class.


Submit