Study Guides (390,000)
CA (150,000)
UTSC (10,000)

Renal Physiology summary

Biological Sciences
Course Code
Stephen Reid

This preview shows pages 1-2. to view the full 6 pages of the document.
Renal Physiology
Kidney Anatomy
The kidneys are located just above the pelvis on either side of the body. Directly above then are
the adrenal glands. Each kidney is connected to the bladder by a ureter. The kidney receives
blood from the renal artery while the renal vein carries blood from the kidneys back to the heart.
In cross section you see that the kidney is composed of an outer region called the renal cortex
and an inner region called the renal medulla. Furthermore, the kidney consists of repeating
segments called renal pyramids. Within each renal pyramid there are numerous nephrons (the
functional unit of the kidney). Fluid (urine) from the collecting ducts of nephrons within any
given renal pyramid drains into a minor calyx. The urine then flows into the central region of the
kidney (the renal pelvis) before entering the ureter which drains urine from the kidney to the
The Nephron
The functional unit of the kidney is the nephron. The majority of nephrons are found in the renal
cortex and are called cortical nephrons. However, the collecting ducts from the cortical nephrons
extend into the renal medulla before emptying into the minor calyx. Some nephrons are
contained primarily within the medulla (although part of them is in the cortex). These are called
juxtamedullary nephrons and they play an important role in establishing the conditions required
for the formation of a concentrated urine.
A nephron begins with a dense capillary bed called the glomerulus which is surrounded by
Bowmans capsule. The glomerulus receives blood from the afferent glomerular arteriole and is
drained by the efferent glomerular arteriole. Together, the glomerulus and Bowmans capsule are
called the renal corpuscle.
From Bowmans capsule, fluid flows into the proximal convoluted tubule and then into the
proximal straight tubule. From there fluid enters the descending Loop of Henle and then the thin
and thick ascending Loop of Henle. Fluid leaves the Loop of Henle and enters the collecting
tube. The collecting tubes from many nephrons connect to a collecting duct which drains into the
minor calyx.
The function of the glomerulus and Bowmans capsule is to filter the plasma to create the initial
fluid that will become urine. The proximal tubule is the primary site of bulk reabsorption of
water, ions, glucose, etc that occurs without any hormonal regulation. The Loop of Henle
(particularly of the juxtaglomerular nephrons) is involved in creating the conditions necessary for
the production of a concentrated urine. The distal convoluted tubule is a site of regulated
ion/water reabsorption. The collecting tube and collecting duct are the site of regulated water

Only pages 1-2 are available for preview. Some parts have been intentionally blurred.

Juxtaglomerular cells, located between the distal tubule and the renal corpuscle release a
substance called renin. Renin activates the renin-angiotensin system which is involved in
ion/water regulation and blood pressure regulation (to raise blood pressure).
Macula Densa cells, located in the wall of the distal tubule as it passes by the glomerulus, release
as of yet unidentified paracrine substances that either dilate (vasodilators) or constrict
(vasoconstrictors) the afferent and efferent glomerular arteriole. By constricting the afferent
glomerular arteriole you reduce blood flow to the glomerulus and lower glomerular filtration
rate. By dilating the afferent glomerular arteriole you increase blood flow to the glomerulus and
raise glomerular filtration rate.
Cortical nephrons receive blood from the peritubular capillaries. These capillaries are a
continuation of the efferent glomerular arteriole that drains blood away from the glomerulus. The
vasa recta is a capillary bed that surrounds the Loop of Henle. In juxtamedullary nephrons the
vasa recta plays a key role in the formation of concentrated urine.
Exchange Processes Within the Nephron
1. Glomerular Filtration
Glomerular filtration refers to the filtration of the plasma at the glomerulus with water and small
substances such as ions, glucose and amino acids moving from inside the glomerular capillaries
into Bowmans capsule. Proteins are to big to be filtered as are red/white blood cells. Therefore,
the fluid that enters Bowmans capsule is similar to plasma but without proteins (remember that
plasma is blood without red/white blood cells).
There are two main forces that drive glomerular filtration. The most important of these is the
hydrostatic pressure within the glomerulus. Hydrostatic pressure simply refers to pressure exerted
to the presence of fluid. Hydrostatic pressure in the glomerulus is the blood pressure in that
capillary bed. Glomerular hydrostatic pressure forces fluid (and small substances) from the
glomerulus into Bowmans capsule. The other force is oncotic pressure but we wont discuss that
in this course.
2. Tubular Reabsorption
Tubular reabsorption refers to the movement of water or small substances such as ions, glucose
and amino acids from the fluid within the kidney tubule (i.e., within the nephron) back in to the
blood. The kidney’s basic approach is to filter everything that it can at the glomerulus (anything
small enough to be filtered) and then take back (reabsorb) what it does not want to get rid of
The cells lining the kidney tubules (nephron) are called tubular cells. The membrane that faces
the lumen of the kidney tubule is called the apical membrane while the membrane that faces the
blood is called the basolateral membrane. To be reabsorbed, substances must travel across the
You're Reading a Preview

Unlock to view full version