# Formula Sheet for Exam

by
OneClass4538

Unlock Document

University of Toronto Scarborough

Economics for Management Studies

MGEB11H3

Vinh Quan

Winter

Description

Required Conditions for a Discrete Poisson Probability Function Converting to the Standard Normal ? Probability Function * 6 L ) Random Variable :- : 6 4 H :-- : 6 L I 6 6 . 8 L f(x) = the probability of x occurrences Discrete Uniform Probability Functionin an interval I Normal Approximation of Binomial :6 L Probabilities J Poisson Distribution $ L JL n = # of values the random variable N L L L:I . L; may assume Uniform Probability Density Function Expected Value of Expected Value of a Discrete Random I Variable * 6 L] > . = *KN= 3 6 3 > 6 L H)0O)5,)N) 6 L L6 :6; 6 = the expected value of 6 = the population mean Uniform Continuous Probability The mean value for the random = - > variable. 6 L Standard Deviation of J :> . =; $ Finite Population Variance of a Discrete Random &=N 6 L IJ L . J l F Variable . I J &=N 6 L L:6 . ; *:6;$ Normal Probability Density Function I Infinite Population * 6 L ) ? ? ; $ J L Number of Experimental Outcomes J Providing Exactly x Successes in n Normal Probability D

More
Less
Related notes for MGEB11H3