Exams are coming!
Get ready with premium notes and study guides!

Study Guides for MATA36H3 at University of Toronto Scarborough (UTSC)


UTSCMATA36H3Xiao JieSpring

MATA36H3 Lecture Notes - Lecture 18: Triangle Inequality, Unit Circle, Coset

OC26103073 Page
0
=lcis o } do not write in this way. Cio coset isino i co , -102 ) e. O " i 02 e e ( ere ) eino z. Both z . za are in a unit circle. Adult i ply 2 compl
View Document
UTSCMATA36H3Xiao JieSpring

MATA36H3 Lecture 17: complex numbers

OC26103077 Page
0
The complex number is a f at ib la , I means algebraically . it behaves identically to the real numbers field view i as a variable. Q is a field field
View Document
UTSCMATA36H3Xiao JieSpring

MATA36H3 Lecture 16:

OC26103074 Page
0
Form : t oc x ) y y. Even though it"s t pex) y = linear dad become. 2nd order typically , there is me solution. The motion of atomic particle , such is
View Document
UTSCMATA36H3Xiao JieSpring

MATA36H3 Lecture 15: separation

OC26103078 Page
0
Ode is an equation that defines ycx ) implicitly , mix x y . derivations of y. Typically , not possible to solve y ex ) Separable equation easiest type
View Document
UTSCMATA36H3Xiao JieSpring

MATA36H3 Lecture Notes - Lecture 11: Deuterium, Thx, Partial Fraction Decomposition

OC26103077 Page
0
T i fu - t inf x - 04 has 3 integrals misc trig sub fractions. Partial i ) j -3 341 410*1 dx u ( x. = a ex - 2) t b a . = dx f ut du t s it. 6=0 of the
View Document
UTSCMATA36H3Xiao JieSpring

MATA36H3 Lecture Notes - Lecture 10: Hard Power

OC26103076 Page
0
Clo marks ) both even power sink cos x f. I odd u cos y du sin x fsihxc f sin x cl. U - tank du seek dx e ) f tax see. 4x dx odd power u= see x aux. B
View Document
UTSCMATA36H3Xiao JieSpring

MATA36H3 Lecture Notes - Lecture 4: Quotient Rule, Cg (Programming Language)

OC26103073 Page
0
Derivative techniques linear f fftg fftfg f of off f cfg ) ]=s f g tffg " fg f the anti derivative a native cancelled. 2 f t f g of g t f g. C i of the
View Document
UTSCMATA36H3Xiao JieSpring

MATA36H3 Lecture 2: integration technique

OC26103072 Page
0
See a portion of fix ) to be equal to. [ u aux ) ] some quantity involving x. Replace dx for in wad dx the integral dx. After this function do step . n
View Document
UTSCMATA36H3Xiao JieSpring

MATA36H3 Lecture 1: review of 30

OC26103074 Page
0
Derivatives sin ex ) cos cx) cos tan. X ) cos x ex ) t cos 4 7=1 odd even tank x ) t. B and range a f- " f- cfex ) ) a f un ) The inverse function fox
View Document
UTSCMATA36H3Xiao JieSpring

MATA36H3 Lecture Notes - Lecture 3: Inverse Trigonometric Functions, Fetus

OC26103074 Page
0
2 pieces : u . du f fex ) fu . du. Note : after you choose u , du must be the nest of fix ) that is multiplied to. Calculate derivative of u . integral
View Document
UTSCMATA36H3Xiao JieSpring

MATA36H3 Lecture 5:

OC26103076 Page
0
Ext llhnltiples of seccx ) and tanux tan ex) Faux - see x see 2x tank f gtanxsecx - secx. X f seitx tan x f seek ctanxtl. Odd power of seek and even po
View Document
UTSCMATA36H3Xiao JieSpring

MATA36H3 Lecture 9: partial fraction and ODE

OC26103077 Page
0
Division get p } degree top 7 degree bottom. Get j 41 or j is this k can only be z k irrted quad: integration. 2x it"s if not work . to eliminate x . w
View Document
UTSCMATA36H3Xiao JieSpring

MATA36H3 Lecture 8: Notebook

OC26103072 Page
0
View Document
UTSCMATA36H3Xiao JieSpring

MATA36H3 Lecture 7: integration

OC26103078 Page
0
Fraction f cx ) want to integrate rational function qcx ) and pox) are polynomials. * process is long . together referred to as partial fractions. "t d
View Document
UTSCMATA36H3Xiao JieSpring

MATA36H3 Lecture Notes - Lecture 6: Partial Fraction Decomposition, I.Mx, Inverse Function

OC26103074 Page
0
View Document
View all Premium Notes (10+)
UTSCMATA36H3P.GWinter

MATA36H3 Study Guide - Comprehensive Final Exam Guide -

OC251776137 Page
0
View Document
UTSCMATA36H3Kathleen SmithSummer

MATA36H3 Study Guide - Comprehensive Final Exam Guide -

OC238857137 Page
0
View Document
UTSCMATA36H3Panagiotis GianniotisWinter

MATA36H3- Final Exam Guide - Comprehensive Notes for the exam ( 24 pages long!)

OC234114124 Page
0
View Document
UTSCMATA36H3allFall

[MATA36H3] - Final Exam Guide - Ultimate 31 pages long Study Guide!

OC32833131 Page
22
View Document
UTSCMATA36H3AllFall

MATA36H3 Midterm: MATA36 Midterm 2008 Winter Solutions

OC25402949 Page
0
View Document
UTSCMATA36H3AllFall

MATA36H3 Midterm: MATA36 Midterm 2011 Spring Solutions

OC254029420 Page
0
View Document
UTSCMATA36H3AllFall

MATA36H3 Midterm: MATA36 Midterm 2007 Winter Solutions

OC254029410 Page
0
View Document
UTSCMATA36H3AllFall

MATA36H3 Midterm: MATA36 Midterm 2007 Spring Solutions

OC25402949 Page
0
View Document
UTSCMATA36H3AllFall

MATA36H3 Final: MATA36 Final Exam 2008 Winter Solutions

OC254029410 Page
0
View Document
UTSCMATA36H3AllFall

MATA36H3 Final: MATA36 Final Exam 2007 Winter

OC254029415 Page
0
View Document
UTSCMATA36H3Xiamei JiangWinter

MATA36H3 Study Guide - Final Guide: Multiple-Image Network Graphics, Riemann Sum

OC4020478 Page
157
View Document
UTSCMATA36H3Kathleen SmithSummer

MATA36H3 Study Guide - Summer 2018, Comprehensive Midterm Notes -

OC238857137 Page
0
View Document
Showing 1 — 12 of 14 result
View all professors (6+)

Study Guides (380,000)
CA (150,000)
UTSC (9,000)
MATA36H3 (10)