Study Guides (248,641)
Mathematics (559)
MAT135H1 (86)
all (48)

# 2- Inverse Functions

3 Pages
123 Views

Department
Mathematics
Course Code
MAT135H1
Professor
all

This preview shows page 1. Sign up to view the full 3 pages of the document.
Description
Inverse  Functions     Knowledge  Summary:     Definition:  The  inverse  of  a  function  is  the  set  of  ordered  pairs  obtained  by  interchanging  the  first  and   second  elements  of  each  pair  in  the  original  function.  Should  the  inverse  of  function  f(x)  also  be  a  function,   this  inverse  function  is  denoted  by  f  (x).      -­‐1   One-­‐to-­‐One  Function:  A  function  is  a  one-­‐to-­‐one  function  if  and  only  if  each  second  element  corresponds   to  one  and  only  one  first  element  (i.e.  each  x  and  y  value  is  used  only  once)   • Use  the  horizontal  line  t est  to  determine  if  a  function  is  a  one -­‐to-­‐one  function   • If  any  horizontal  line  intersects  your  original  function  in  only  one  location,  your  function  will  be  a   one-­‐to-­‐one  function  and  its  inverse  will  also  be  a  function     Three  Solutions:   1) Interchange  ordered  pairs:  if  your  function  is  defined  as  a  list  of  ordered  pairs,  simply  interchange   the  x  and  y  values   2) Solve  algebraically:  solve  for  an  inverse  relation  algebraically:     a. Set  the  function  =  y   b. Swap  the  x  and  y  variables
More Less

Only page 1 are available for preview. Some parts have been intentionally blurred.

Unlock Document

Unlock to view full version

Unlock Document
Me

OR

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Join to view

OR

By registering, I agree to the Terms and Privacy Policies
Just a few more details

So we can recommend you notes for your school.