Summary notes 2

15 Pages
235 Views
Unlock Document

Department
Mathematics
Course
MAT224H1
Professor
Sean Uppal
Semester
Summer

Description
MAT224H1b.doc Linear Transformations E XAMPLES AND E LEMENTARY P ROPERTIES Definition If V and W are two vector spaces, a funT :V W is called a linear transformation if it satisfies the following axioms: T1: T v +V v1)= T V +W T v1)v v1V T V T v 1 . T2: T r V v = rW T v ,r R,vV . Example a+bc a+b+c Define T : 2 M 22, andv = a+bx+cx P T2v = ( ) 1 . Show that T is linear. 2 a+b+c ab+c T 1 T v v 1)= T a a 1)+(b b 1) + c c 1) 2) . = 1 a a 1 + b b 1 c c)1( a a 1 + b b 1 + c c(1 ) ( ) 2 (a a 1 +)b b 1 + c c 1 a a 1 b b 1 + c c(1 ) ( ) 2 2 T v + T v1 = T a+bx +x )+T a1+ b1x+c 1 ) = 1 a + + + c + 1 a1+ b1 c1 a1+ b1+ c1. 2 + + c a +c 2 a1+ b1+c1 a1 b1+ c1 1 (a+a 1 +) +b 1 c+) 1 a +)1 + b+b1 + c+ 1 ) ( ) = 2 (a+a +) +b + c+) ( a+a ) (+b + )+( ) ( ) 1 1 1 1 1 1 T 2 1 ra rb rc ra rb rc T r v )T ra rbx rcx 2)= 2 ra rb rc ra rb rc . =r 1 a + + + c = T(v) 2 + + c a +c Therefore, T is linear. Example The following are linear transformations: 2 D : n P n1 where D p xn= p x n ex: D x +3x = 2x +3 . x I;Pn Pn+1 where I p n = ) ap n dy .( ) Theorem Let T :V W be a linear transformation. 1) T 0) = 0 . V W 2) T v = T v ,vV . n n 3) T a v = a T v( ). i1 i i i1 i i Page 1 of 15 www.notesolution.com MAT224H1b.doc Theorem Let T :V W and S :V W be two linear transformations. Suppose that V =span v , ,v }. If 1 n T vi= S v ii , then T = S . n n n Proof: Let v = aiviV . So T v = T aivi = aiT v i , and ( ) i=1 i 1 i=1 n n S(v)= S a v = a S v . Thus,(T ))= S v). i i i i i=1 =1 Theorem Let V and W be vector spaces, ande1, ,en} a basis oV . Given any vectow 1, ,wnW , there exits a unique linear transformatioT :V W satisfyingT e )= w ,i . In fact, the actioTis as follows: i i n n Given v = a iv iV , thenT v = aiT vi .( ) i1 i=1 Example 1 0 2 0 1 Find a linear transformatioT: P2 M 22 such thatT(1+ x =)0 0 , T x + x )= 1 0 , and 2 0 0 T 1+x )= . 0 1 2 2 (1+ x, x + x , 1+ x } is a basis Pf2 a + bx+ cx2 =c (1+ x)+c x( +x 2)+c 1+ x2) 1 2 3 a +bc c1= a c1 c3 = 0 2 2 a +b+c . (a c1 c3 + b c 1 c2 x + c c 2 c3x = 0 b c)1 c2 = 0 c2= c c c = 0 2 2 3 a b+c c3= 2 T v )=T c1(1+ x)+c 2( +x 2)+c3 1+ x2))= c1 1 + x)+c2 x + x2)+ c3T(1+ x2) 1 0 1 0 0 a+ c 1 0 + +b c 0 1 a b c 0 0 = c10 0 +c2 1 0+ c30 1 = 0 0 + 1 0 + 0 1 . 2 2 2 a +bc a +b+c T( )= 2 2 a +b+c a b+c 2 2 K ERNEL AND IMAGE OF A L INEAR T RANSFORMATION Definition Let T :V W be a linear transformation. Then: kerT = vV T v = 0 . Page 2 of 15 www.notesolution.com
More Less

Related notes for MAT224H1

Log In


OR

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Sign up

Join to view


OR

By registering, I agree to the Terms and Privacy Policies
Already have an account?
Just a few more details

So we can recommend you notes for your school.

Reset Password

Please enter below the email address you registered with and we will send you a link to reset your password.

Add your courses

Get notes from the top students in your class.


Submit