Study Guides (247,960)
MATH 102 (10)

# WordProblemReviewFall08.pdf

2 Pages
133 Views

School
Department
Mathematics
Course
MATH 102
Professor
Martial Agueh
Semester
Winter

Description
Word Problem Review  The problems you will review here do not require any calculus. They are practice in setting up problems ready for the  use of calculus techniques.  They are important preparation for problems coming later in the course.   If you can’t find  the needed equations from the problem statement you will not be able to solve the problem.  Text References:  Section    Examples  Exercises            Linear Equations     1.3    6, 8    Try It 6:  Ex 79 – 83, 85, 86, 88, 89                        Some of these problems can be answered using  numerical                 methods instead of finding equations.  This won’t help much in                  Calculus.  Other equations     1.4        69, 71 – 73, 75      Extra Practice Problems           Write equations that express the following:   1. The area of a circle, A, in terms of its radius, r.  2. The circumference of a circle, C, in terms of its radius, r.  3. The area of a circle, A, in terms of its circumference, C.  4. The volume, V, of a sphere in terms of its radius, r.  5. The volume, V, of a cube in terms of its side length, x.    6. A rectangle has perimeter 36m.  Let the length of one side be x.  Find an equation for the area, A,  of the  rectangle in terms of x.    7. Three adjoining , identical, rectangular pens are constructed using 108m of fencing. Let the length of one side of  a pen be x and the other be y.  Find an equation for the total area, A,  of all three pens in terms of x. Then find A  in terms of y.    8. A pen is constructed with one side along a river and therefore not requiring a fence.  The total area enclosed is  96m  .  Let x be the length of the side parallel to the river and y be the other side length.  Find an equation for  the needed fence length, F,  (i)  in  terms of x, and (ii) in terms of y.    9. A rectangular pen is to be constructed using fencing along three sides that costs \$10/m and the fourth side costs  \$15/m. 48m  is to be enclosed.  (i)  Find an equation for the total cost, C, in terms of x, the length of the side that  costs \$15/m. (ii) Find an equation for the total cost, C, in terms of y, the length of the side that costs \$10/m.     10. A rectangular pen is to be constructed using fencing along three sides that costs \$10/m and the fourth side costs  \$15/m. \$7500 is available for the work.  (i)  Find an equation for the total area enclosed, A, in terms of x, the  length of the side that costs \$15/m. (ii) Find an equation for the tota
More Less

Related notes for MATH 102
Me

OR

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Join to view

OR

By registering, I agree to the Terms and Privacy Policies
Just a few more details

So we can recommend you notes for your school.