false

Study Guides
(248,397)

Canada
(121,509)

Western University
(12,921)

Mathematics
(105)

Mathematics 1225A/B
(38)

Vicki Olds
(8)

Final

Unlock Document

Mathematics

Mathematics 1225A/B

Vicki Olds

Winter

Description

from 2011 tests CODE 111 Mathematics 1225B
Page 1 Practice Final Exam
PART A (35 marks)
NOTE: YOUR ANSWERS TO THE PROBLEMS IN PART A MUST BE
CODED ON THE SCANTRON SHEET. ALSO CIRCLE YOUR ANSWERS
IN THIS BOOKLET. Only the (scantron) answer sheet will be marked for Part
A. Extra time will NOT be given for coding answers at the end of the exam.
A1. If log3x − log3x = 2, ﬁnd x.
1 1
A: 6 B: 3 C: D: 9 E:
3 9
√
A2. If f(x) = 4e x, ﬁnd f (4).
1 2 2 2 2 2
A: 2e B: e C: 2e D: 4e E: 8e
A3. If f(x) = 2−x , ﬁnd f (0).
A: 0 B: 1 C: −1 D: − 1 E: −ln2
ln2
A4. Find the slope of the tangent line to the graph of y = eat the point where x = ln3.
A: 8 B: 6 C: 12 D: 18 E: 9
A5. If 8x − 11 = A + B , ﬁnd B.
(x − 2)(x − 1) x − 2 x − 1
A: 1 B: 2 C: 3 D: 4 E: 5
Z
3
A6. Find 12x lnxdx.
1
A: x4 3lnx − + C B: 3x (xlnx − 1) + C C: 12x (lnx − 1) + C
4
4 2
D: 3x4 lnx − 1 + C E: 3x (lnx) + C
4 2
Z 3
e 1
A7. Evaluate dx.
e xlnx
3 1 2
A: ln3 B: e − e C: D: − E: 0
3 3 Mathematics 1225B CODE 111 from 2011 tests
Practice Final Exam Page 2
Z ∞
−1
A8. Evaluate x5 dx.
1
A: 1 B: − 1 C: 1 D: −1 E: diverges
4 4
A9. Determine which one of the following integrals represents the area of the region bounded
by y = x and y = 4.
Z Z Z Z Z
2 2 4 2 2 √ 4 √ 4 √
A: (4 − x )dx B: (4 − x )dx C: y dy D: y dy E: 2 y dy
0 0 0 0 0
A10. Find the area of the region bounded by y = x − x and y = x.
8 8 4 4 16
A: B: − C: D: − E:
3 3 3 3 3
A11. Find √he volume of the solid of revolution obtained by rotating the region bounded by
y = x, y = 2 and x = 0 about the x-axis.
8π 16π 32π
A: 6π B: 8π C: D: E:
3 3 5
A12. Find √he volume of the solid of revolution obtained by rotating the region bounded by
y = x, y = 2 and x = 0 about the y-axis.
A: 6π B: 8π C: 8π D: 16π E:32π
3 3 5
A13. If f(x,y) = x − 3xy + y , ﬁnd f y3,1).
A: −7 B: 3 C: 24 D: −6 E: 1
A14. If f(x,y) = y , ﬁnd fyxx,y).
A: y lny B: xyx−1 C: yx−1 D: yx−1(1 + xlny) E: y
x
A15. Let f(x,y) = ye − 3x − y. Find the only critical point of f(x,y).
A: (0,0) B: (0,3) C: (1,1) D: (3,1) E: (−3,−1) from 2011 tests Mathematics 1225B
Page 3 CODE 111 Practice Final Exam
A16. Find all the critical points of the function f(x,y) = 3x − x − 3xy . 2
A: (0,0) B: (1,1),(−1,−1) C: (1,0),(−1,0),(0,1),(0,−1)
D: (0,0),(−1,1),(1,1) E: (1,−1),(1,1),(−1,1),(−1,−1)
Use the following information for questions 17, 18 and 19.
3 2
f(x,y) = x − 6xy − y
2
fx(x,y) = 3x − 6y
f yx,y) = −6x − 2y
fxx (x,y) = 6x
f yy,y) = −2
fxyx,y) = −6
A17. Which one of the following is true for the point (1,−3)?
A: (1,−3) is not a critical point of f(x,y).
B: f(x,y) has a saddle point at (1,−3).
C: f(x,y) has a local minimum at (1,−3).
D: f(x,y) has a local maximum at (1,−3).
E: The second partials test yields no information.
A18. Which one of the following is true for the point (−6,18)?
A: (−6,18) is not a critical point of f(x,y).
B: f(x,y) has a saddle point at (−6,18).
C: f(x,y) has a local minimum at (−6,18).
D: f(x,y) has a local maximum at (−6,18).
E: The second partials test yields no information.
A19. Which one of the following is true for the point (0,0)?
A: (0,0) is not a critical point of f(x,y).
B: f(x,y) has a saddle point at (0,0).
C: f(x,y) has a local minimum at (0,0).
D: f(x,y) has a local maximum at (0,0).
E: The second partials test yields no information.
A20. If the method of Lagrange multipliers is used to maximize the function f(x,y) = xy + 10
subject to the constraint x + 9y = 18, what system of equations must be solved?
2 2
A: xy + 10 + λ(x + 9y − 18) = 0 B: 2x + λy = 0 C: y + 2xλ = 0
18y + λx = 0 x + 18yλ = 0
xy + 10 = 0 2 2
x + 9y − 18 = 0
D: xy + 2λx = 0 E: xy + 10 = 0
2 2
xy + 2λy = 0 x + 9y − 18 = 0
x + 9y − 18 = 0 Mathematics 1225B from 2011 tests
Practice Final Exam CODE 111 Page 4
A21. In using Lagrange’s method to solve a particular constrained optimization problem, the
following system of equations needs to be solved:
1 + 2λx = 0
3 + 2λy = 0
2x + y 2 = 11
Find all possible solutions to this system.
√ √ √ √
A: ( 5,1) and (− 5,−1) B: ( 5,−1) and (− 5,1) C: (1,−3) and

More
Less
Related notes for Mathematics 1225A/B

Join OneClass

Access over 10 million pages of study

documents for 1.3 million courses.

Sign up

Join to view

Continue

Continue
OR

By registering, I agree to the
Terms
and
Privacy Policies

Already have an account?
Log in

Just a few more details

So we can recommend you notes for your school.

Reset Password

Please enter below the email address you registered with and we will send you a link to reset your password.