Study Guides (238,072)
Canada (114,906)
York University (9,812)
NATS 1760 (46)


15 Pages
Unlock Document

York University
Natural Science
NATS 1760
John Dwyer

EXAM REVIEW­ NATS 1170/A TIMELINE: 1.  13 Jan 6 Science, Technology, and Citizenship 4: the future of techno­science   2.  14 Jan 13 Climate Change 1: what's at issue; the history   • Chap. 10: Weart, "How could the Climate Change?" and "Reflections"  • Chap. 11: Hansen, "Defusing the Global Warming Time Bomb" 3.  15 Jan 20 Climate Change 2: the failure of the Kyoto approach   • Chap. 12: Prins & Rayner, "The Wrong Trousers"  •  Chap. 13: Prins & Rayner, "Time to Ditch Kyoto"  4. 16 Jan 27 Climate Change 3: engineering the climate?  5.  17 Feb 3 Climate Change 4: thought communities & climate solutions   • Chap. 14: Douglas et al, "Is Time Running Out?"  6.  18 Feb 10 Climate Change 5: merchants of doubt   • Chap. 15: Oreskes, "Merchants of Doubt"  •  Chap. 16: Oreskes and Conway, "Of Free Speech and Free Markets" 7. Feb 17 Family Day (No Class) + Reading Week 18­21 February  8. 19 Feb 24 Genetics 1: Basics of genetics and genomics  9. 20 March 3 Genetics 2: Genomics and people; genetic engineering  10. 21 March 10 Genetics 3: genetic determinism  11. 22 March 17 Genetics 4: genetically modified organisms, risk & uncertainty  12. 23 March 24 Genetics 5: why does genetic engineering make people uneasy?  CHAPTERS: 1. 13 Jan 6 Science, Technology, and Citizenship 4: the future of techno­science  CHAPTER 10 (Spencer Weart): • In 1930s the talk about weathers took an unusual turn. • Old folds began to insist that weather truly wasn’t what it used to be. • Articles claimed winters had gotten milder. • Meteorologists explained weather patterns always did vary modestly, in cycles  lasting a few decades or centuries.  • Many professional meteorologists doubted that there was in fact any worldwide  warming trend. All they saw were normal, temporary, regional fluctuations. •  In 1938 Guy Stewart Calendar (non­expertise)    Challenged the consensus of experts. He had confirmed numbers indeed showed global  warming and human industry was responsible for it. He believed that everywhere we  (humans) burned fossil fuels we emitted millions of tons of carbon dioxide gas (CO2),  and that was changing the climate. •  Joseph Fourier French scientist  Fourier believed that heated surface emits invisible infrared radiation, which carries the  heat energy away into space. But when he calculated the effect, he got a temperature well  below freezing, much colder than the actual Earth. The difference, he recognized was due  to the Earth’s atmosphere, which somehow keeps some of the heat radiation. He  recognized the way the atmosphere holds in heat on the entire Earth is more subtle  (indirect). The atmosphere’s trick is to intercept (captures) a part of the infrared ration  emitted from the surface, preventing it from escaping into space.  •  John Tyndall British Scientist  He was the first to explain the correct reasoning. Most scientists held this opinion that all  gases are transparent to infrared radiation. He confirmed that main gases in the  atmosphere, oxygen and nitrogen, are transparent. Coal gas was an industrial gas  produced by heating coal, mostly methane, which was used for lighting. He found that for  heat rays, this gas was as opaque. Thus, he declared the significance for the planet’s heat  balance and found other gases like gas CO2 was also opaque­ now call greenhouse gas. A  fraction of the infrared radiation rising from the surface is absorbed by Co2. Its heat  energy is transferred into the air itself rather than escaping into space. Not only is the air  warmed, but also some of the energy trapped in the atmosphere is radiated back to the  surface and warms it.  Thus the temperature of the Earth is maintained at a higher level  than it would be without the CO2. Tyndall found that the really important “greenhouse”  gas is H2O simple water vapor readily blocks infrared radiation. He explained that water  vapor “is a blanket more necessary to the vegetable life than clothing is to man. Remove  for a single night the aqueous vapor from the air.. and the sun would rise upon an island  held fast in the iron grip of front. So if something dried out the atmosphere, that might  cause an ice age (like olden days).  •  Svante Arrhenius scientist 1896 (riddle of the ice age)  He calculated the atmospheric moisture and the radiation entering and leaving the Earth  for each zone of latitude. He announced that cutting the amount of CO2 in the air by half  would cool the world by 5C. His colleague Arvid Hogbom calculated the amounts of  CO2 emitted by factories and other industrial sources. Surprisingly, he found that the rate  at which human activities were adding the gas to the atmosphere was roughly the same as  the rates at which natural processes emitted and absorbed the gas. The added gas was not  much compared with the volume of CO2 already in the atmosphere­ the amount released  from the burning of coal in the year 1896 would raise the level by scarcely a thousandth  part. Arrehnius expected any technological change would be the best and idea of humans  massively perturbing the atmosphere did not rise trouble. Arrhenius figured it would take  a couple of thousand years to double the amount of CO2 in the air.  Thus, it scarcely  seemed reasonable to imagine that humans could change the entire planet’s atmosphere,  unless perhaps in some emote or fantastic future. • Scientist dismissed Areehnius idea because they felt that it was impossible for  CO2 to build up in the atmosphere at all. They explained that the atmosphere is only a  wisp that contains little of the material on the Earth’s surface, by comparison with the  huge quantities locked up in minerals and in the oceans. For every molecule of CO2, in  the air, there are about 50 dissolved in seawater. If humanity added more of the gas to the  air, nearly all of it would wind up in the oceans.  • Scientists also saw that Arehenius had grossly oversimplified the climate system  in his calculations. He ignored such things as the way wind patterns and ocean currents  may change if the temperature changed. • The way cloudiness rose or fell to stabilize temperature, or the way the oceans  maintained a fixed level of gases in the atmosphere, were examples of a universal  principle: the Balance of Nature. • Hardly anyone imagined that human actions, so puny among the vast natural  powers, could upset the balance that governed the planet as a whole. • Such was the public belief, and scientists are members of the public, sharing most  of the assumptions of their culture.  • Many pious scientists and rational preachers could agree that everything happened  by natural processes in a world governed by a reliable God­given order.  •  Reflectio s • One necessary principle is to take things apart­ tolerating dissent, allowing every  rational argument to be heard in public discussion. • A second principle is to put things together­ arguring out a concensus on  important points, even while agreeing to disagree on others. • This sprawl is inevitable, when so many different factors do in fact influence  climate. The complexity imposes difficulties on those who try to reach solid conclusions  about climate change. • The discovery of global warming was potentially a social product, a consensus of  judgment arising in countless discussions among thousands of experts.  • Some skeptics believed that ‘global warming’ was nothing but a social  construction­ more like a myth invented by a community than a fact like a rosk you could  hold in your hand.  • Scientists understood that their ideas about climate change were based on no more  than a scattering of uncertain measurement and hand­waving arguments. • Knowledge was too primitive to say whether the climate would turn warm or  cold. Their main point was that they had now learned enough to give up the old  confidence in stability.  • Their main point was that they had now learned enough to give up the old  confidence in stability.  • By the end of the twentieth century it was the critics, arguing for a self­regulating  climate, who were struggling to maintain the traditional belief.  • Not only scientists but most people had reluctantly reached a less comfortable  view of the natural world and its relationship with human civilization. The views of the  public and of the scientific community had necessarily changed together, each acting  upon the other.  • Certainly, in a restricted sense, one could call the resulting understanding of  climate change a product of human society.  • Scientists readily admitted that their knowledge of this future could only be stated  within a range of possibilities.  • Such perceptions are shaped not only by scientists, but by interest groups,  politicians, and the media.  • Thus, Spencer Weart believes when we are faced with a new disease or an armed  invasion, we do not put off decisions until more research is done: we act using the best  guidelines available.  CHAPTER 11 (James Hansen): • Human­made greenhouse gases, especially carbon dioxide and  chlorofluorocarbons (CFCs), were accumulating in the atmosphere. These gases are a  climate “forcing”, a perturbation (alarm) imposed on the energy budget of the planet.  Like a blanket, they absorb infrared (heat) radiation that would otherwise escape from the  earth’s surface and atmosphere to space. • Calculated that these human­made gases were heating the earth’s surface. • At present, most accurate knowledge about climate sensitivity (understanding) is  based on data from the earth’s history, and this evidence reveals that small forces,  maintained long enough, can cause large climate change. • Human­made forces, especially greenhouse gases, soot and other small particles  now exceed natural forces, and the world has begin to warm at a rate predicted by climate  models.  • The stability of the great ice sheets on Greenland and Antarctica and the need to  preserve global coastlines set a low limit on the global warming that will constitute  “dangerous anthropogenic interference” with climate. • Halting(Stopping) global warming requires urgent, unprecedented international  cooperation, but the needed actions are feasible and have additional benefits for human  health, agriculture and the environment.  • The temperature in the previous interglacial period (the Eemian), when sea level  was several meters higher than today, defines an estimate of the warming that today’s  civilization would consider to be dangerous anthropogenic interference with climate.  •  Climate Change Today   o The single most important human­made greenhouse gas is carbon dioxide,  which comes mainly from burning fossil fuels (coal, oil, and gas). Yet the  combined effect of the other human­made gases is comparable. These other gases,  especially tropospheric ozone and its precursors, including methane, are  ingredients in smog that damage human health and agriculture.  o Other human­made climate forcing includes replacement of forests by  cropland.  o Natural forcing, such as volcanic eruption and fluctuations of the sun’s  brightness, probably have little trend. o “” A climate forcing is a mechanism that alters the global energy balance.  A forcing can be natural­ fluctuations in the earth’s orbit, for example – or human­ made, such as aerosols and green house gases. Human­made climate forcing now  dominate natural forcing’s. Carbon dioxide is the largest forcing, but air pollutants  (black carbon, ozone, methane) together are comparable. (Aerosol effects are not  known accurately.)  •  Global Warming   o Much more solar radiation is being absorbed by the earth than is being emitted as heat  to space.  o The agreement with observations, for both the modeled temperature change and  ocean heat storage, leaves no doubt that observed global climate change is being  driven by natural and anthropogenic forcing’s.  •  The Time Bomb   o Mitigating the changes rather than just adapting to them.  o Significant sea level rise could begin much sooner if the planetary energy imbalance  continues to increase.  o It seems clear that global warming beyond some limit will make a large sea­level  change inevitable for future generation.  o Hansen agues that level of dangerous anthropogenic influence is likely to be set by  the global temperature and planetary radiation imbalance at which substantial  deglaciation becomes practically impossible to avoid.  •  Earths Energy Imbalance   o The Earth’s energy is balanced when the outgoing heat from the earth equals the  incoming energy from the sun. At present the energy budget is not balanced. Human­ made aerosols have increased reflection of sunlight by the earth, but this reflection is  more than offset by the trapping of heat radiation by greenhouse gases. The excess­ energy about one watt per square meter­ warms the ocean and melts ice. The  simulated planetary energy imbalance (graph) is confirmed by measurements of heat  stored in the oceans. The planetary energy imbalance is a critical metric, in that it  measures the net climate forcing and foretells future global warming already in the  pipeline.  •  A Brighter Future   o Continued efficiency improvements, more renewable energy, and new technologies  that produce little or no carbon dioxide or that capture and sequester it.   o Nuclear power, if acceptable to the public, could be an important contributor.  o It will not be easy to stabilize greenhouse­gas concentrations, but empirical evidence  for climate change and its impacts will continue to accumulate and this will influence  the public, public­interest groups, industry and governments at various levels.  CHAPTER 12 (Gwyn Prins and Steven Rayner) • Kyoto Protocal of 1994 has failed to tackle the anthropogenic climate change.  • Kyoto has become a surrogate (replacement) for other fights, as well as dogma  (principle).  • The Kyoto Protocol was doomed from the beginning because it was modeled on  plausible but inappropriate precedents.  • The Kyoto Protocol failed because it is the wrong type of instrument (a universal  intergovernmental treaty) relying too heavily on the wrong agents exercising the  wrong sort of power to create, from the top down, a carbon market.  • It relies on establishing a global market by government fiat, which has never been  done successfully for any commodity. • Kyoto was constructed by quick borrowing from past practice with other treaty  regimes dealing with ozone, sulphur emissions and nuclear bombs which, while  superficially plausible, are not applicable in the ways that the drafters assumed  because these were “tame” problems (complicated, but with defined and  achievable end­states), whereas climate change is “wicked” (comprising open,  complex and imperfectly understood systems). Technical knowledge was taken as  sufficient basis from which to derive Kyoto’s policy, whereas “wicked” problems  demand profound understanding of their integration in social systems, and their  ongoing development. • Its advocates invested emotional as well as political capital in the process, making  it difficult to contemplate the idea that it is fatally flawed. •  Its narrow focus on mitigating the emission of greenhouse gases (in which it has  failed) has created a taboo on discussing other approaches, in particular,  adaptation to climate change.  • Failure to adapt will cost the poor and vulnerable the most • For the past fifteen years, it has given the concerned public an illusion of effective  action, tranquillizing political concern. This has been, perhaps, its most damaging  legacy. • Climate change is not a discrete problem amenable to any single shot solution, be  it Kyoto or any other. Climate change is the result of a particular development  path and its globally interlaced supply system of fossil energy. No single  intervention can change such a complex nexus (although as the earlier sections  have shown, the attempt to do so has produced unintended and unwelcome  effects). There is no simple silver bullet. • Urgency of re­framing climate policy in this way because whereas today there is  strong public support for climate action, continued policy failure on the Kyoto  principles spun as a story of success could lead to public withdrawal of trust and  consent for action, whatever form it takes • Kyoto was a child of summits, meaning it followed te classical model of  summitry developed with concentric circles of experts who supplied the decision­ markets at the center with the formulate and positions to negotiate.  • Such a model works when the knowledge is secure and the problems are tame in a  technical sense. However, a summit is much less likely to produce a predictable,  but accelerate agreement, if the subject matter is, not tame, but rather wicked.  • What makes a problem “wicked” is the impossibility of giving it a definitive  formulation: the information needed to understand the problem id dependent upon  ones idea for solving it.  • Every wicked can be considered as a symptom of another problem: the  relationships there are complex (multi­faceted) in contrast to complicated  (multiple, but mono­faceted).  • The higher the perceived public anxiety, the greater the uncertainty, the greater the  uncertainty, the greater the desire for direct involvement; the greater the  involvement, the lower the willingness to trust expert decision­making.  • The ultimate objective of the Convention was stabilization of greenhouse gas  concentrations in the atmosphere at a level that would prevent dangerous  anthropogenic interference with the climate systems. • Such a level should be achieved within a time­frame sufficient to allow  ecosystems to adapt naturally to climate change, to ensure that food production if  not threatened and to enable economic development to proceed in a sustainable  manner. • The overt concentration upon greenhouse gases and their mitigation in the  convention has obscured other important and potentially potent instruments of  climate policy.  • The solution to its failure proposed by those who have promoted and defended  Kyoto so far is an expanded regime with more demanding targets and stricter  enforcement. This saves face because it avoid admitting to structure and design  flaws or more deeply embedded­ the aguish of doubt in the face of uncertainty.  • If radical change is to be achieved, we will need a radical approach.  CHAPTER 13 (Gwyn Prins and Steven Rayner) • The Kyoto Protocol is a symbolically important expression of governments’  concern about climate change. But as an instrument for achieving emissions  reduction, it has failed. • It has produced no demonstrable reductions in emissions or even in anticipated  emissions growth. And it pays no more than token attention to the needs of  societies to adapt to existing climate change. • Kyoto was constructed by quickly borrowing from past treat regimes dealing with  stratospheric ozone depletion, acid rain from sulphur emissions and nuclear  weapons. • Kyoto assumed that climate change would be best attacked through global  emissions controls, treating tonnes of carbon dioxide like stockpiles of nuclear  weapons to be reduced via mutually verifiable targets and timetables. • Unfortunately, this borrowing simply failed to accommodate the complexity of the  climate­change issue.  • Kyoto failed in several ways, not just in its lack of success in slowing global  warming, but also because it has stifled discussion of alternative policy approaches  that could both combat climate change and adapt to its unavoidable consequences. • Needs to open up new approaches and not to close them down as Kyoto did.  • Those advocating the Kyoto regime will be reluctant to embrace alternatives  because it means admitting that their chosen climate policy has and will continue  to fail.  • The rational thing to in the face of a bad investment is to cut your losses and try  something different.  • Kyoto depends on the top­down creation of a global market in carbon dioxide by  allowing countries to buy and sell their agreed allowances for emissions.  • Even if such a price were to be established, it is likely to be modest­ sufficient only  to stimulate efficiency gains. • Without significant increase in publicly funded research and development for clean  energy technology and changes to innovation policies, there will be considerable  delay before innovation catches up with this modest price signal. • If climate change is as serious a threat to planetary well­being, it is time to  interrupt this cycle.  • *Climate change is not amenable to an elegant solution because it is not a discrete  problem. It is better understood as a system of a particular development and its  globally interlaced supply­system of fossil fuels.  Together they form a complex  nexus of mutually reinforcing, interwined patterns of human behavior, physical  materials and the resulting technology. It is impossible to change such complex  systems in desired ways by focusing on just one thing.  • When single­shot solutions such as Kyoto are attempted, they often produce quite  unintended, often negative consequences.  • Therefor
More Less

Related notes for NATS 1760

Log In


Don't have an account?

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Sign up

Join to view


By registering, I agree to the Terms and Privacy Policies
Already have an account?
Just a few more details

So we can recommend you notes for your school.

Reset Password

Please enter below the email address you registered with and we will send you a link to reset your password.

Add your courses

Get notes from the top students in your class.