# MAST10011 Chapter Notes - Chapter 5: Quantile, Confidence Interval, Poisson Distribution

53 views2 pages

## Document Summary

Confidence intervals: est sd(x) = approximately est se. Point estimates: a number calculated from sample data that represents the best guess value of the characteristic. And if the population is normally distributed: Interval estimates: a. k. a. a confidence interval a set of plausible values for the parameter. Random variables = estimators x1, x2, x3 observations = estimates. (cid:1871) (cid:1866) (cid:1857)(cid:1871)(cid:1872)(cid:1865)(cid:1872)(cid:1867)(cid:1870) (cid:1867)(cid:1858) (cid:2020), however many values are possible, which are provided by the distribution of . X/t is an estimator for , in a poisson distribution, point estimate (cid:1868) =+(cid:2870)+(cid:2872) instead of (cid:1868) = increase margin of error by (cid:2868). (cid:2873) =+(cid:2870) instead of = , increase margin of error by (cid:2868). (cid:2873) (cid:2019) =+(cid:884) instead of (cid:2019) = , increase margin of error by (cid:882). 5. N =n(cid:4666)(cid:882),(cid:883)(cid:4667) (cid:1815)(cid:1814)(cid:1806)(cid:1804)(cid:1805)(cid:1814)(cid:1803)(cid:1805) (cid:1814)(cid:1820)(cid:1805)(cid:1818)(cid:1819) (cid:1805)stimating when is unknown: Prediction intervals (for a future observation) - is unknown when is known.

## Get access

\$8 USD/m\$10 USD/m
Billed \$96 USD annually
Homework Help
Study Guides
Textbook Solutions
Class Notes
Textbook Notes
Booster Class