Textbook Notes (270,000)
CA (160,000)
UW (5,000)
MATH (80)
Chapter

237_course_notes.pdf


Department
Mathematics
Course Code
MATH237
Professor
Diana Parry

This preview shows pages 1-3. to view the full 257 pages of the document.
Calculus 3
Course Notes for MATH 237
Edition 4.21
J. Wainwright and D. Wolczuk
Department of Applied Mathematics
Copyright: J. Wainwright, August 1991
2nd Edition, July 1995
D. Wolczuk, 3rd Edition, April 2008
D. Wolczuk, 4th Edition, September 2009 (updated October 2010)

Only pages 1-3 are available for preview. Some parts have been intentionally blurred.

Contents
Preface .................................... ii
To the Student Reader ........................... iii
Acknowledgements ............................. v
1Graphs of Scalar Functions 2
1.1 Scalar Functions .............................. 2
1.2 Geometric Interpretation of z=f(x, y).................. 4
2Limits 9
2.1 Definition of a Limit ............................ 9
2.2 Limit Theorems ............................... 10
2.3 Proving a Limit Does Not Exist ...................... 11
2.4 Proving a Limit Exists ........................... 14
3Continuous Functions 20
3.1 Definition of a Continuous Function .................... 20
3.2 The Continuity Theorems ......................... 22
3.3 Limits revisited ............................... 28
4The Linear Approximation 29
4.1 Partial Derivatives ............................. 29
4.2 Second Partial Derivatives ......................... 32
4.3 The Tangent Plane ............................. 35
4.4 Linear Approximation for z=f(x, y)................... 36
4.5 Linear Approximation in Higher Dimensions ............... 39
5Differentiable Functions 42
5.1 Definition of Differentiability ........................ 42
5.2 Differentiability and Continuity ...................... 47

Only pages 1-3 are available for preview. Some parts have been intentionally blurred.

CONTENTS CONTENTS
5.3 Continuous Partial Derivatives and Differentiability ........... 49
5.4 The Linear Approximation Revisited ................... 52
6The Chain Rule 55
6.1 Basic Chain Rule in Two Dimensions ................... 55
6.2 Extensions of the Basic Chain Rule .................... 62
6.3 The Chain Rule for Second Partial Derivatives .............. 67
7Directional Derivatives and the Gradient Vector 72
7.1 Directional Derivatives ........................... 72
7.2 The Gradient Vector in Two Dimensions ................. 76
7.3 The Gradient Vector in Three Dimensions ................ 80
8Taylor Polynomials and Taylor’s Theorem 82
8.1 The Taylor Polynomial of Degree 2 .................... 82
8.2 Taylor’s Formula with Second Degree Remainder ............ 85
8.3 Generalizations ............................... 89
9Critical Points 91
9.1 Local Extrema and Critical Points ..................... 91
9.2 The Second Derivative Test ........................ 95
9.3 Proof of the Second Partial Derivative Test ................ 106
10 Optimization Problems 109
10.1 Extreme Value Theorem .......................... 109
10.2 Algorithm for Extreme Values ....................... 112
10.3 Optimization with Constraints ....................... 115
11 Coordinate Systems 124
11.1 Polar Coordinates .............................. 124
11.2 Cylindrical Coordinates .......................... 131
11.3 Spherical Coordinates ............................ 133
12 Mappings of R2into R2137
12.1 The Geometry of Mappings ........................ 138
12.2 The Linear Approximation of a Mapping ................. 142
12.3 Composite Mappings and the Chain Rule ................. 145
You're Reading a Preview

Unlock to view full version