MAT136H1 Chapter Notes - Chapter 3b: Partial Fraction Decomposition, Antiderivative

31 views2 pages
MATH136 Lecture 16 Integration by Partial Fraction
Mathematics: Reducing Problems
Example: Reducing partial problem to find an integral:
Once we have an approximation for finding a quantity on a slice, we can use out “slicing”
process to obtain an integral.
Example: Substitution and Integration by Parts:
Reduce a complex integral computation to a simpler one that we already know how to solve
with “guess and check”.
Today: we know how to integrate fractions like
 via substitution and
. How can we
reduce the problem of computing integral of rational function to this one?
Strategies for Integrating Rational Functions
If the degree of degree of , try long division and use the method of partial
fractions on the remainder.
If  is the product of distinct linear factors, use partial fractions of the form

If  contains repeated linear factor  , use partial fractions of the form
 
  
If  contains an unfactorble quadratic , try a partial fraction of the form 
Question: Where a trigonometric function?
For which of the following functions, do you expect to see a trigonometric (pr inverse
trigonometric) function its anti-derivative
A. 

B. 

C. 

D. 

Unlock document

This preview shows half of the first page of the document.
Unlock all 2 pages and 3 million more documents.

Already have an account? Log in
plummouse698 and 39596 others unlocked
MAT136H1 Full Course Notes
92
MAT136H1 Full Course Notes
Verified Note
92 documents

Document Summary

Math136 lecture 16 integration by partial fraction. Example: reducing partial problem to find an integral: O(cid:374)ce (cid:449)e ha(cid:448)e a(cid:374) app(cid:396)o(cid:454)i(cid:373)atio(cid:374) fo(cid:396) fi(cid:374)di(cid:374)g a (cid:395)ua(cid:374)tit(cid:455) o(cid:374) a slice, (cid:449)e ca(cid:374) use out (cid:862)slici(cid:374)g(cid:863) process to obtain an integral. Today: we know how to integrate fractions like (cid:2869)(cid:3028)+(cid:3029) via substitution and (cid:2869)(cid:4666)(cid:4667). If the degree of (cid:1842)(cid:4666)(cid:4667) degree of (cid:1843)(cid:4666)(cid:4667), try long division and use the method of partial. If (cid:1843)(cid:4666)(cid:4667) is the product of distinct linear factors, use partial fractions of the form (cid:3002) (cid:3004) If (cid:1843)(cid:4666)(cid:4667) contains repeated linear factor (cid:4666) (cid:1855)(cid:4667), use partial fractions of the form. If (cid:1843)(cid:4666)(cid:4667) contains an unfactorble quadratic (cid:4666)(cid:4667), try a partial fraction of the form (cid:3002)+(cid:3003)(cid:4666)(cid:4667) (cid:1827)(cid:2869) (cid:1855)+ (cid:1827)(cid:2870) (cid:4666) (cid:1855)(cid:4667)(cid:2870) fractions on the remainder. Answer is d, because the term (cid:4666)(cid:2870)++(cid:886)(cid:4667) in denominator can not be factored/simplified so that you would get an integral for the form (cid:2869)(cid:3118)+(cid:3028)(cid:3118)(cid:1856) as one of the integrals when the integral after completing the square is split.

Get access

Grade+20% off
$8 USD/m$10 USD/m
Billed $96 USD annually
Grade+
Homework Help
Study Guides
Textbook Solutions
Class Notes
Textbook Notes
Booster Class
40 Verified Answers
Class+
$8 USD/m
Billed $96 USD annually
Class+
Homework Help
Study Guides
Textbook Solutions
Class Notes
Textbook Notes
Booster Class
30 Verified Answers

Related Documents

Related Questions