# Textbook Notes for Arthur Parzygnat

UCONNMATH 2210QArthur ParzygnatFall

## MATH 2210Q Chapter Notes - Chapter 5: Diagonalizable Matrix, Royal Institute Of Technology, Lek Mating

OC11476874 Page
18 Dec 2017
0
Eigenvector - of an n n scalar matrix a is a nonzero vector x such that x x. Eigenvalue (scalar ) of a - if there is a nontrivial solution x of. X is a
View Document
UCONNMATH 2210QArthur ParzygnatFall

## MATH 2210Q Chapter Notes - Chapter 6: Invertible Matrix, Orthogonal Basis, Standard Basis

OC11476877 Page
18 Dec 2017
0
Inner product/dot product - u v = ut = 1 1 matrix. = s calar u v and are ut. 1 n is a n 1 matrix matrices. Thm 1: let u, v and w be vectors in. V = c u
View Document
UCONNMATH 2210QArthur ParzygnatFall

## MATH 2210Q Chapter Notes - Chapter 2: Augmented Matrix, Standard Basis, Gaussian Elimination

OC11476876 Page
18 Dec 2017
0
2. 1 matrix operations m n matrix has m rows and n columns. Scalar entry in the ith row and jth column of a is aij. Diagonal entries in an matrix a are
View Document
UCONNMATH 2210QArthur ParzygnatFall

## MATH 2210Q Chapter Notes - Chapter 3: Parallelepiped, Volme, Laplace Expansion

OC11476872 Page
18 Dec 2017
0
Matrix is invertible if and only if its determinant is nonzero. Cofactor expansion across the d eta j1 + aj2. + jn jn eta d row - column - Choose the r
View Document
UCONNMATH 2210QArthur ParzygnatFall

## MATH 2210Q Chapter Notes - Chapter 1: Transformation Matrix, Linear Map, Scalar Multiplication

OC11476872 Page
18 Dec 2017
0
The multiplication by a transforms x into b and transforms u into the zero vector. Solving the equation xa = b is finding all vectors x that are transf
View Document
UCONNMATH 2210QArthur ParzygnatFall

## MATH 2210Q Chapter Notes - Chapter 10, 7: Diagonalizable Matrix, Spectral Theorem, Diagonal Matrix

OC11476873 Page
18 Dec 2017
0
Markov chain - mathematical model for movement between states. Transition probability - probability that the chain moves from state j to state i in one
View Document

Textbook Notes (280,000)
US (110,000)
UConn (1,000)
MATH (70)
Arthur Parzygnat (6)