Class Notes (884,988)
US (343,718)
UMD (6,077)
BIOL (10)
BIOL 600 (10)
Lecture 4

BIOL600 Lecture 4: BSCI202 Exam 1.docx

24 Pages

Course Code
BIOL 600
Kyle Smith

This preview shows pages 1-4. Sign up to view the full 24 pages of the document.

Loved by over 2.2 million students

Over 90% improved by at least one letter grade.

Leah — University of Toronto

OneClass has been such a huge help in my studies at UofT especially since I am a transfer student. OneClass is the study buddy I never had before and definitely gives me the extra push to get from a B to an A!

Leah — University of Toronto
Saarim — University of Michigan

Balancing social life With academics can be difficult, that is why I'm so glad that OneClass is out there where I can find the top notes for all of my classes. Now I can be the all-star student I want to be.

Saarim — University of Michigan
Jenna — University of Wisconsin

As a college student living on a college budget, I love how easy it is to earn gift cards just by submitting my notes.

Jenna — University of Wisconsin
Anne — University of California

OneClass has allowed me to catch up with my most difficult course! #lifesaver

Anne — University of California
Blood  2/5/15 9:04 AM Blood The only fluid tissue in human body Classified as connective tissue Components of blood 1) Living cells called formed elements Erythrocytes – red blood cells – transport oxygen and carbon dioxide Leukocytes – white blood cells ­  defend against bodies pathogens Platelets – cell fragments formed from megakaryocytes, important in blood clotting 2) Non­living matrix: plasma is the fluid and solutes ­cytes  means it is a mature cell type ­blasts  means it is an immature cell type Blood Hematocrit When blood is centrifuged Erythrocytes sink to the bottom (45% of blood, percentage known as hematocrit) Buffy coat contains leukocytes and platelets (less than 1% of blood), the buffy coat is a thin whitish layer  between the erythrocytes and plasma Plasma rises to the top (55% of blood) Average blood volume Women: 5.0 L Men: 5.5 L What can you tell from a hematocrit? Anemia Travel? At higher altitudes, erythrocytes will be higher Buffy coat can indicate infection Leukemia Plasma Mostly made up of water Composed of salts Plasma proteins Nutrients, waste, respiratory gases, and hormones are transported 280­300 milliosmoles per liter (we will use 300) Kwashiorkor Condition derived from extreme starvation Body starts using plasma proteins from plasma, and osmotic balance becomes lower, causing water to  leave the blood and brings your number under 300 (edema) Physical characteristic of blood Oxygen rich blood is scarlet red Oxygen poor blood is dull red pH between 7.35­7.45 Blood temperature is slightly higher than body temperature at 38 degrees C, transfers heat through the  body ~90% water 6­8% proteins which: increase osmotic pressure, buffer H+, increase blood viscosity, and provide fuel  during starvation (not preferred) 3 major classes of plasma proteins (mostly synthesized in liver) Albumins­ major contributor to plasma oncotic osmotic pressure and act as carriers Globulins­ carriers, clotting factors, precursor proteins Fibrinogen­ blood clotting Nutrients: glucose, amino acids, lipids, vitamins Wastes: urea, bilirubin, creatinine Gases: oxygen, carbon dioxide Hormones Electrolytes (aka salts, ions) High concentrations of Na+ and Cl­ Low concentrations of H+, HCO3­, K+, and Ca2+ Ringer’s Solution A solution of distilled water containing electrolytes and compounds so that the same concentrations as their  occurrence in body fluids This solution is iso­osmotic to our blood and tissues Why? 280­300 milliosmoles per liter Blood and other tissue osmolarity must be equal The lower the number of osmolarity, the higher concentration of water Osmosis The movement of the solvent (water) Water moves from low solute to high solute Water moves from high solvent to low solvent Blood Plasma Acidosis: blood becomes too acidic (less than 7.35) Alkalosis: blood becomes too basic (greater than 7.45) In each scenario. The respiratory system and kidneys help restore blood pH to normal Complications with acid­base disturbance Conformation change in protein structure Changes in excitability of neurons Changes in balance of other ions Cardiac arrhythmias Vasodilation/vasoconstriction Acids Proton (H+) donors Strong acids dissociate completely and liberate all of their H+ in water Weak acids, such as carbonic acid, dissociate only partially Bases Proton (H+) acceptors Strong bases dissociate easily in water and tie up H+ Weak bases, such as bicarbonate ion and ammonia, are slower to accept H+ Formed Elements Erythrocytes (RBCs) Leukocytes (WBCs) Platelets (cell fragments) Developmental Aspects of Blood Cells The fetal liver and spleen are early sites of blood cell formation Bone marrow takes over hematopoiesis by the seventh month Fetal hemoglobin differ from hemoglobin produced after birth, fetal hemoglobin has a gamma subunit in  place of the beta subunit and higher affinity for oxygen Physiologic jaundice results when the liver cannot rid the body of hemoglobin breakdown products fast  enough Erythrocytes (RBCs) Carry oxygen Anatomy: Biconcave disk: large surface area favors diffusion Essentially bags of hemoglobin Anucleate Very few organelles No mitochondria Use anaerobic glycolysis 5­6 billion RBC’s per ml of blood flexible membrane also function to maintain osmolarity and blood/plasma pH Hemoglobin in RBC Hb binds strongly (but reversibly) to oxygen Globin + 4 heme groups = 4 polypeptides and heme = iron­containing group Iron­containing protein Can also bind to CO2 and H+ Formation of RBCs Mature RBCs are unable to divide, grow, or synthesize proteins Wear out in 100 to 120 days Eliminated by phagocytes in the spleen and liver Iron is a component of hemoglobin Hemoglobin content of blood Men: 13­18 gram/dL Women: 12­16 gram/dL Rate is controlled by a hormone called erythropoietin Kidneys produce most erythropoietin as a response to reduced oxygen levels in the blood (sensed by  chemoreceptors) Homeostasis is maintained through negative feedback from blood oxygen levels Control of Erythrocyte Production Normal blood oxygen levels: 100 mmHg Imbalance: 60 mmHg Anemia Decrease in the oxygen­carrying capacity of blood Dietary anemia Iron­deficiency Pernicious: lack of vitamin B12 Hemorrhagic anemia: bleeding Hemolytic anemia Malaria or sickle cell anemia Aplastic anemia: bone marrow defect Renal anemia: kidney disease Leukocytes (WBCs) Crucial in body’s defense against disease Have nucleus and organelles Able to move in and out of blood vessels Can move by amoeboid motion through tissues Can respond to chemicals released by damaged tissues (cytokines) 4000­11000 WBC per cubic millimeter (microliter) of blood 2 Major Classes of WBCs Granulocytes Granules in their cytoplasm can be stained Possess lobed nuclei Include: neutrophils, eosinophils, and basophils Neutrophils  Multilobed nucleus with fine granules 40­70% of leukocytes in blood Phagocytes at active sites of infection Secrete cytokines Circulate in blood 7­10 hours Migrate to tissues for a few days Increase in number during infections Eosinophils 1­4% of leukocytes large brick­red cytoplasmic granules Phagocytes (not main mechanism of action Defend against parasites like worms Granules contain toxic molecules that attack parasites Basophils Less than 1% of leukocytes Non­phagocytic May defend against large parasites by releasing toxic substances Contribute to allergic reactions Agranulocytes Lack visible cytoplasmic granules Nuclei are spherical, oval shape Monocytes become macrophages 4­8% of leukocytes phagocytes new monocytes circulate in blood for a few hours then migrate to tissues ▯ macrophages wandering macrophages fixed macrophages Lymphocytes 20­45% of WBCs 3 types B lymphocytes Effector B cells: become plasma cells and secrete antibodies Memory B cells B cell contacts antigen ▯ then become a plasma cell Plasma cell secretes antibodies Antibodies mark antigens for destruction T lymphocytes Secrete cytokines that enhance activity of B cells and other T cells enhances activity of macrophages and  NK cells Cytotoxic T cells kill virus­infected cells, abnormal cells, and bacteria Memory T cells used for reoccurring infection Null cells Recognize abnormal or infected cells cause lysis by secreting perforins Can attack virus­infected cells without identifying virus Early disease against viral infections Cause lysis Fast­acting early immune response Leukocyte Issues Abnormal members of leukocytes Leukocytosis­ WBC count above 11000 leukocytes/mm^3 Leukopenia­ abnormally low leukocyte level; commonly caused by certain drugs such as corticosteroids or  anti cancer agents Leukemia occurs when bone marrow becomes cancerous, turns out excess WBC Platelets Derived from ruptured multinucleate cells Needed for clotting process Normal platelet count = 300000 mm Hematopoiesis Blood cell formation Occurs in red bone marrow All blood cells are derived from a common stem cell (hemocytoblast) Hemocytoblast differentiation Lymphoid stem produces lymphocytes Myeloid stem produces all other formed elements Erythrocyte synthesis stimulated by erythropoietin secreted from kidneys under conditions of low oxygen  levels in blood flowing to kidneys Formation of WBC and Platelets Controlled by hormones Thrombopoietin stimulates production of platelets Hemostasis Stoppage of bleeding resulting from a break in a blood vessel 3 phases: Vascular spasms Vasoconstriction causes blood vessel to spasm Spasms narrow the blood vessel, decreasing blood loss Platelet plug formation Collagen fibers are exposed by a break in a blood vessel; platelets become sticky and cling to fibers Anchored platelets release chemicals to attract more platelets Platelets pile up to form a platelet plug Coagulation (blood clotting) Platelet components Platelet plug needed for formation of blood clot Colorless Cell fragments No nucleus Has organelles and granules Chemicals that prevent platelet aggregation Prostacyclin Nitric oxide CD39 Aspirin Prevents platelet activation Inhibits the activation of thromboxane A2 Hemostasis Injured tissues release tissue factor (TF3) PF3 (a phospholipid) interacts with TF3 blood protein clotting factors and calcium ions to trigger a clotting  cascade The clot remains as endothelium regenerates Intrinsic and Extrinsic Coagulation Pathways Know the difference Know the common pathway (where the two pathways meet) Factor 10 Prothrombin does nothing Fibrin forms blood clo
More Less
Unlock Document
Subscribers Only

Only pages 1-4 are available for preview. Some parts have been intentionally blurred.

Unlock Document
Subscribers Only
You're Reading a Preview

Unlock to view full version

Unlock Document
Subscribers Only

Log In


Don't have an account?

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Sign up

Join to view


By registering, I agree to the Terms and Privacy Policies
Already have an account?
Just a few more details

So we can recommend you notes for your school.

Reset Password

Please enter below the email address you registered with and we will send you a link to reset your password.

Add your courses

Get notes from the top students in your class.