Class Notes (997,851)
US (389,160)
Fisk (7)
BAD 200 (7)
All (7)
Reference Guide

Permachart - Marketing Reference Guide: Becquerel, Hyperbolic Function, International Standard Book Number

4 Pages
735 Views
Fall 2015

Department
BAD - Business Administration
Course Code
BAD 200
Professor
All
Chapter
Permachart

This preview shows page 1. Sign up to view the full 4 pages of the document.
INTEGRALS INVOLVING a+bu & p+qu INTEGRALS INVOLVING a+bu & p+qu
Calculus Integrals II
Calculus Integrals II
pqu
abu
du bqu bp aq
b
abu C
du
pquabu aqbpq
qa bu aq bp
qa bu aq bp
C
abu
pqu
du abu
q
bp aq
qq
qa bu
bp aq C
pqu
+
+
=+−
()
++
+
()
+
=
+
()
−−
+
()
+−
+
+
+
=++
()
+
+
(
232
32
1
221
ln
tan
))
+
=+
()
++
+
()
+
+
()
+
()
+
+
()
+
=+
()
()
+
()
+
()
()
()
+
()
+
nabudu pqu
nabu
qn
aq bp
qn
pqu
n
abu
du
du
pqu
nabu
abu
bp aq n p qu n
bn
bp aq n
du
pqu
nabu
21
23 23
11
23
21 1
ppqu
n
abu
du pqu
nabu
bn
nbp aq
bn
pqu
n
abu du
abu
pqu
ndu abu
qn p qun
b
qn
du
pqu
nabu
+
()
+
=+
()
+
+
()
+
()
+
()
+
()
+
+
+
()
=− +
()
+
()
+
()
+
()
+
2
21
2
21
1
1121 1
du
abupqu aqbp
pqu
abu C
udu
abupqu aqbp
a
babu p
qpqu C
du
abu pqu aq bp a bu
q
aq bp
pqu
abu
+
()
+
()
=
+
+
+
+
()
+
()
=+
()
−+
()
+
+
()
+
()
=−+
+
+
+
1
1
11
2
ln
ln ln
ln
+
+
()
+
()
=−−
+
+
+
()
+
+
()
+
()
=
()
+
()
+
()
+
()
+
()
C
udu
abu pqu aq bp
p
aq bp
abu
pqu
a
ba bu C
udu
abu pqu
a
baqbpabu
aq bp
p
qpqu aaq bp
2
2
2
2
2
2
2
1
12
ln
ln bb abu C
du
abu pqu aq bp n abu pqu
bm n du
abu pqu
C
abu
pqu
du bu
q
aq bp
p
mn m n
mn
2
11
1
2
1
1
1
2
ln
ln
+
()
+
+
()
+
()
=−
()
()
+
()
+
()
+
+−
()
+
()
+
()
+
+
+=+
−−
ppqu C+
()
+
INTEGRALS INVOLVING a2u2, u2<a2
udu
au au C udu
au uaau
au Cdu
ua u au a
u
au C
udu
au
ua au
22
22 2
22 32 2 22 4
2
22
3
22
22 22
1
22
1
2
1
2
22
=− −
()
+=− + +
+
()
=− +
+
=− −
()
∫∫
ln ln ln
ln ++
()
=
+
()
=− + +
+
()
=
()
()
+
()
=
∫∫
∫∫
Cdu
ua u a
u
au Cdu
ua u au a
au
au C
udu
au n au
Cudu
au a
nn
22 2
2
22 22 2 23
22 22
122
22
1
2
11
2
1
21
1
2
ln ln
uu
Cdu
au
u
aa u a
au
au C
udu
au
a
au
au C udu
au
u
au a
au
a
222
222 2 3
3
22
2
2
22
22 2
22
222
2
1
4
2
1
22
1
4
()
+
()
=
()
++
+
()
=
()
+−
()
+
()
=
()
+
∫∫
ln
ln ln uu Cdu
ua u aa u a
u
au C
du
ua u au
u
aa u a
au
au Cudu
au
m
n
+
()
=
()
+
+
()
=− +
()
++
+
()
=
∫∫
22
222 2 4
2
22
22 2
24 42 2 522
1
2
1
2
1
2
3
4
ln
ln aa udu
au
udu
au
du
ua u au aa u a
u
au Cdu
au
u
an a u
m
n
m
n
nn
22
22
2
22
1
32 2
242
42 2 6
2
22 22 2 22
1
1
2
1
2
1
21
−−
()
()
()
=− +
()
+
+
()
=
()
()
+
∫∫
∫∫
ln 223
22
1
21
111
222
1
22 2 22
12 22
122 222
12 22 2
n
an
du
au
du
ua u a n a u a
du
ua u
du
ua u a
du
ua u a
du
uau
n
nnn mnmnm
()
()
()
=
()
()
+
()
()
=
()
+
−− −
∫∫
(()
n
Permacharts has more mathematics titles to add to your collection of quick-reference guides; be sure to pick up a copy of Calculus Integrals I,
Integral Calculus, Differential Equations, Intermediate Algebra, Introductory Algebra, Laplace Transforms, Power Math, Physics,
Geometry, Vectors & Matrices, and more
CALCULUS INTEGRALS II • 1-55080-799-4 1
l e a r n r e f e r e n c e r e v i e w
TM
permacharts
© 1996-2013 Mindsource Technologies Inc.
www.permacharts.com

Loved by over 2.2 million students

Over 90% improved by at least one letter grade.

Leah — University of Toronto

OneClass has been such a huge help in my studies at UofT especially since I am a transfer student. OneClass is the study buddy I never had before and definitely gives me the extra push to get from a B to an A!

Leah — University of Toronto
Saarim — University of Michigan

Balancing social life With academics can be difficult, that is why I'm so glad that OneClass is out there where I can find the top notes for all of my classes. Now I can be the all-star student I want to be.

Saarim — University of Michigan
Jenna — University of Wisconsin

As a college student living on a college budget, I love how easy it is to earn gift cards just by submitting my notes.

Jenna — University of Wisconsin
Anne — University of California

OneClass has allowed me to catch up with my most difficult course! #lifesaver

Anne — University of California
Description
l e a r n • r e f e r e n c e • r e v i e w permacharts TM CCalculus Integrals II INTEGRALS INVOLVING a+bu & p+qu INTEGRALS INVOLVING a+bu & p+qu du 1  +  pu+ 2( )u+ −p aq ∫( )puq ( ) = − lnab+  +C ∫ du = 2 a++C a+ 3b udu = 1 a l( )+ − +ln( ) C  + du 1  q( )u − − bp  ∫( )+uq ( ) − b q  ∫ = ln  +C ( )+ab qa+q −  q( )u +aq bp  du 1 1  q  +    ∫ 2 =  + ln + C ( ) puq ( ) aq− +  bu aq−bp a+  ab 2 aub 2 bp aq −1 qa( ) ∫ du = − tan +C   puq q qq bp aq udu = 1  p lna+  − a +C ∫( ) pq2( ) aq − −a bp p+  b( )u  n +1 n ∫(pq ) ab = 2( ) aub + aq bp ∫( ) du 2 2 q( )+ 23qn( )+ ab udu = a + ∫( ) puq2( ) bqa( )b ( ) ∫ du = aub + 1 p2 aa( )−2p  ( )q n aub ( ) aq () ( )p qu n 1 2 q ln( ) + 2 ln( ) C  ( ) bp  b  b()3− du 2( ) aq n()− ∫ n 1 du 1  1 ( ) aub ∫ m n =− m  n −1 1 + ( ) puq ( ) ( )−bp ()−1  ) puq ( ) n n n− 1  ∫( )+ du = 2( ) ab +2n( )a− ∫( )+ du du  aub b()1+ bn() + ab b( )+− 2 ∫ m n−1+C ( ) pq ( )  ∫ ab du=− aub + b ∫ du ab du = + aq bp lnp+ C + ( ) n q() ( ) qu n −1 2q()− ( ) n −1 ab ∫ pq q p2 ( ) INTEGRALS INVOLVING a –u , u a 2 2 2 2 INTEGRALS INVOLVING a+bu & p+qu du 1 ua  1 −1u du = +2 ln b( )u +qa ( ) C  + ∫ua2−2 = 2a lnua+  +C a coth a C ∫ ( )pq ( ) bq   udu 1 udu a ua −  ∫ ∫ = − ln() C2 + =u ln + C udu ( )uq ( ) aq bp du ua2−2 2 2 ua−2 ua+  ∫ ∫ = − ( )puq( )+ bq 2bq ( )pq ( ) udu u a2 2 2 ∫ 2 2= +22 − () C + 2bqu aq bp ua − ∫ ( )pud ( ) = ( )puq ( ) − du 1 1  −  4bq ∫ = +2 3 ln  +C aq bp 2 u ()a−2 au 2 u+  ( ) du 8bq ∫ ( )puq( )  2  du = − 1 1 ln u +C ∫uu()− 2 2au22 24 ua−2  ( ) ( )+uq ( ) bp −q du ∫ ∫ du = + ( ) b b ( )puq( ) du =− u − 1 l ua +C ∫ 2 2 2 2au a − 4a3  ua  du 2 ab () − () ∫ = +C ( ) aubp( ) ( ) ( ) aq p qu+ udu 1 ∫ 2 2 2 =− 2 2 +C ()− 2()a− udu u 1  ua ∫ 2 =− + l  +C ua−2 2()a−2 4a  ua  INTEGRALS INVOLVING e u & lnu () 3 2 au 2 3 udu a 1 2 2 e du = l+n au + () ()+ + ∫ 2 2 2 =− 2 ua−2 + 2 l()ua C + ∫ u 11 !2 2⋅ 3 3⋅ () − () au a au e du =− e + a e du du 1 1  u2  ∫ un ()−1 n−1 n −1 un−1 ∫ =− + ln + C uu 2 − 2 2au()2−2 2a4 ua−2  () ∫ du = − 1+l( )q Cau pe+ au pqa du =− 1 − u − 3 ln −  +C ∫ 22 2 2 4 au 2au a − 4a5 ua+  du u 1 1 au uu() − www.p ermach()ts .co m ∫ 2 = +2 2 a − + l( ) qe C + ( )+ au p ap( )qe ap du 1 1 1  u2  ∫ 22 4 − + 6 nn 2 2 +C a n −1 2 uu a−2 2au 2au()−2 a  ua−  au n u e bsin n()− b au n−2 () u d ue∫b s∫n = abn+ 22 ( )ub − + cos uab+d 2 2 e bsin du =− u − 2n − du au n−1 n()− b 2 ∫ 2 2 n 2 n 2 2 n −1 2an( )− 2 2 1 u d u e bosn = e bcos ( )s + +sin u 2 22 u∫e bcosn−2 ()a− 2an()u a() − ()a− ∫ abn+2 ab+ udu 1 au e u ln 1 ea1 lnu lnu ∫ 2 2 n =−n 2 2 −1+C u∫ ∫∫ ln = − du+ − = 2du C () − n u2()− () − a a u u u u n n +1 du 1 1 du ln udu = ln u−+ ≠, 1 = + du ln lnC ∫ n =− n−1 2 ∫ 1 ∫ u∫ n+1 uln () u()2−a 2 1()u a() a u()2 − lnnudu = lnu n ln −udu m m−2 m−2 ∫ ∫ udu = ud +a2 ud ∫ ∫2 2 ∫n 2 2 n−1 2 2 n mn u unln n m n −−1 () − ()a− () − ∫undu = m +1 1 −m + ∫u ln udu, m ≠− 1 du = 1 1 du − du n 2 2 3 3 ∫ m 2 2 n a 2 m −22 2 n a2 ∫ m 2 2 n 1 udu ()n+u1u l( ) +1 ln uu () − u ua () − uu() − ∫ lnu =+n()( )n u 1 ln 2⋅ ! + 33⋅ ! + GENERAL NOTES • u is a function of x • Inverse trigonometric and hyperbolic functions represent principal • a, b, m, n, p, and q are real constants (restricted where indicated or values necessary) • All denominators are assumed to not equal zero • C represents the constant of integration • This reference guide may be used by itself or in conjunction with Calculus Integrals I • All angles are measured in radians 2 CALCULUS INTEGRALS II • 1-55080-799-4 w w w.permacharts.com © 1996-2013 Mindsource Technologies Inc. l e a r n • r e f e r e n c e • r e v i e w permachartsM TRIGONOMETRIC INTEGRALS CONT’D du =− 1 cotau C du =− cosau + −1 ln tanu + C = sinaudu sinau + a cosaudu 2sin2au 3a ∫∫ sin au 2auain 2a2   un n n () u1 −1 −n− 1 u udu u π au 2   au  du 1 π πau 1 3  au π du 1  2 ∫1 −sinau = atan + a2lnsi42 +C ∫ ∫ 2 = 2a2tan + 6a4tan  1 +C −sinau = atan42   ( )sinau du cosau n− 2 du udu ucaos 1 n −2 udu ∫ ∫ ∫ n =− n−1 n + n −1 −2 =− n−1 − 2 2 2 n− n− +n −1 ∫ sin au an()−1 sin au sin au sinau a()− 1sin au a n () ()2 − sinau sin au du 1 du 1 au ∫ ∫ 2 = + tanau C =− cot + C du = + sina+ 1 ln tanπ au +C cos au a 1 −cosau a 2 ∫cos3au2
More Less
Unlock Document

Only page 1 are available for preview. Some parts have been intentionally blurred.

Unlock Document
You're Reading a Preview

Unlock to view full version

Unlock Document

You've reached the limit of 4 previews this month

Create an account for unlimited previews.

Already have an account?

Log In


OR

Don't have an account?

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Sign up

Join to view


OR

By registering, I agree to the Terms and Privacy Policies
Already have an account?
Just a few more details

So we can recommend you notes for your school.

Reset Password

Please enter below the email address you registered with and we will send you a link to reset your password.

Add your courses

Get notes from the top students in your class.


Submit