fernando2580

fernando2580

Lv1

fernando2580

0 Followers
0 Following
0 Helped

ANSWERS

Published1

Subjects

Algebra1

Verification of the Limit:

To verify the limit limπ‘₯β†’1(π‘₯βˆ’1)2=0, we can use the definition of a limit. The definition of a limit states that for a function 𝑓(π‘₯), as x approaches a value 𝑐, if for every πœ–>0 there exists a 𝛿>0 such that whenever 0<|π‘₯βˆ’π‘|<𝛿, then |𝑓(π‘₯)βˆ’πΏ|<πœ–, where L is the limit.

Step-by-Step Verification:

Given the limit limπ‘₯β†’1(π‘₯βˆ’1)2=0, we need to show that for any πœ–>0, there exists a 𝛿>0 such that whenever 0<|π‘₯βˆ’1|<𝛿, then |(π‘₯βˆ’1)2βˆ’0|<πœ–.

Let’s proceed with the verification:

  1. Start with:|(π‘₯βˆ’1)2βˆ’0|=|(π‘₯βˆ’1)(π‘₯βˆ’1)|=|π‘₯βˆ’1||π‘₯βˆ’1|=|π‘₯βˆ’1|2
  2. We want to show that this expression can be made less than any positive value of epsilon, i.e., we want to show:|(π‘₯βˆ’1)2|<πœ–
  3. This implies:|π‘₯βˆ’1|2<πœ–
  4. To simplify further, consider:|π‘₯βˆ’1|2=(π‘₯βˆ’1)2
  5. Now, let’s choose 𝛿=π‘šπ‘–π‘›(1,πœ–). Then if:0<|π‘₯βˆ’1|<π‘šπ‘–π‘›(1,πœ–)π‘₯βˆ’1<π‘šπ‘–π‘›(1,πœ–)(π‘₯βˆ’1)2<(𝛿)2
  6. Since we chose 𝛿=π‘šπ‘–π‘›(1,πœ–) and we have shown that:(π‘₯βˆ’1)2<(𝛿)2This implies:|(π‘₯βˆ’1)2βˆ’0|=|(π‘₯βˆ’1)2|<(𝛿)2β‰€πœ–

Therefore, by choosing appropriate values for delta and epsilon and showing that the condition holds true, we have verified that the limit is indeed equal to zero.

Conclusion:

The verification using the definition of limits confirms that: π‘™π‘–π‘šπ‘₯β†’1(π‘₯βˆ’1)2=0.

You're absolutely right! The verification process you've outlined is exactly h...

Weekly leaderboard

Start filling in the gaps now
Log in