Study Guides (248,176)
MATH 1005 (23)

# T1Solutions.pdf

1 Page
135 Views

School
Department
Mathematics
Course
MATH 1005
Professor
Ida Toivonen
Semester
Fall

Description
MATH 1005B Test 1 Solutions January 31, 2012 [Marks] [6] 1. Solve the initial-value problem 2y =os(x),y (0) = 2. y Solution: ▯ 2 2yy =cos( x) ⇒ y =sin( x)+ c ⇒ y = ± sin(x)+ c. y(0) = 2 ⇒ 2= √ c ⇒ c =4 ⇒ y = sin(x)+4. 2 2 ▯ x + y [6] 2. Find the general solution of y xy . Soluti2n: 2 ▯ x + y x y y ▯ 1 ▯ 1 ▯ 1 y = xy = y + x,u = x ⇒ u + xu = u + u ⇒ xu = u ⇒ uu = x ⇒ 1u =ln |x| + c ⇒ u = ± 2ln |x| + k ⇒ y = ±x 2ln |x| + k. 2 [6] 3. Find the general solution of xy3 y = x +1. Solution: R y + 3y = x +1 ⇒ I(x)= e xdx = e3ln |= |x| = ±x ,andw emaytek I(x)= x . x x x4 x3 Then x 3y +3 x y = x + x 2 ⇒ (x y) = x + x 2 ⇒ x y = + + c ⇒
More Less

Related notes for MATH 1005
Me

OR

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Join to view

OR

By registering, I agree to the Terms and Privacy Policies
Just a few more details

So we can recommend you notes for your school.