Textbook Notes (270,000)
CA (160,000)
Carleton (2,000)
ECOR (10)
Chapter Lab 8

ECOR 1010 Chapter Notes - Chapter Lab 8: Inta, Conversion Of Units, Piecewise


Department
Engineering Common Core Courses
Course Code
ECOR 1010
Professor
Henry Saari
Chapter
Lab 8

This preview shows pages 1-3. to view the full 10 pages of the document.
ECOR 1010 INTRODUCTION TO ENGINEERING
BRYCE MARINO KUHN
ASSIGNMENT #?
Assignment Title: Laboratory 5 – Univariate Data
TO Marking TA:


Lab Section: L3
Room: 4301CB – Carleton University
FROM:


 !"!#$ %!&
'!(")*! +,+-

Only pages 1-3 are available for preview. Some parts have been intentionally blurred.

./0
$")1(23"$1
"44!!%!*4*!4!-"'-04 "
4%!%4 %!!!!4/!
!-"'-0!5"!%*/%!46
" !4#4&!!
-"'-0"!!44!!!44!! !!
!4 4*7*#! !%!!8&
9 4%! 4( !4 
-: 4 !*4!!4!
 
-")$-'-(";1(
"!%!4 -"'-0!%"4%!
! /!%!*!4!!-"'-04*!
%!"-"'-04**4 4<!%!%!!!
4
)2'"
"4!!=*%*%%%*!!!4
>7?"4%!"!!=*%%! !7
! !$*!*%%!!!/*!
8%***$*!
!!8!!! %!44@ 4!
!4/A49%!B0.C4,!
%/* 69%!D+D* !4
'E%!+,,,)A!'EB0.C 44F
!!=*!%)A;!B0
.C!*!7!
($32$1
G!!**!=*4!/-"'-0!!:!
!!/%44**4F9%%
!%!44!-"'-0/ %!%
* 7*!**! -!
4@-"'-0!* 4 !/%*%!! 4!
4%!%!9,4F*6%!
!-"'-0!41*-"'-0!!4!/ 
:!!*!/!=/-"'-0!*4 !
-* !-"'-0!!H* 4* 4! %
!=*!*54!/*!!!"
!* -"'-0% 44!4!!"
5%!4!!!44#
&4!4!!4

Only pages 1-3 are available for preview. Some parts have been intentionally blurred.

./0
313'2$1
" !%!*!4 /!!!!
4 %! "!!!4!
-"'-04 !%! !5 4  !
-99($3I$2)-("-0'
9
a= @ (x,y) f(x,y)%This function will make a the product of x by y
%Make sure that x and y are the same sized matricies
x= 2 %x can be any value
y = 3 %y can be any value
a=x*y %a will be the product of x multiplied with y (x and y must be
defined for the equation to work)
output =a; %The value of "a" will be equal to "output"
>

#7/&#7/&
7>

>
@
>
J
9
When both matrices are equal
a= @ (x,y) f(x,y)%This function will make a the product of x by y
%Make sure that x and y are the same sized matricies
x= [1;2;3] %x can be any vector
y = [3;2;1] %y can be any vector
if length(x)~= length(y) %If the length of x is not equal to the length of
y then do the following
error('Matrix/Vector dimensions are not equal, please ensure that both
x and y are equal lengths.') %Displays the following text
end %Ends the if statement
a= x.*(y.^2) %a will be the product of x multiplied with y (x and y must be
defined for the equation to work)
output =a; %The value of "a" will be equal to "output"
asize= length(a) %Defining the size of a, inorder to reshape "a" into a
vector
a= reshape(a,[asize,1]) %Reshaping "a" to the defined "asize" value so that
it is "asize" by 1 (in other words a vector)
When both matrices are horizontal
a= @ (x,y) f(x,y)%This function will make a the product of x by y
%Make sure that x and y are the same sized matricies
>

#7/&#7/&
7>


@
>
@


>

+
@
!8>
@
>

+
@
@
You're Reading a Preview

Unlock to view full version