EESB03H3 Lecture Notes - Frostbite, Occluded Front, Middle Latitudes

69 views9 pages
30 Jan 2013

For unlimited access to Class Notes, a Class+ subscription is required.

EESBO3: Climatology
Lecture 1:
Chapter 1: The Earth and its atmosphere
Overview of the Earths Atmosphere
Stars are hot, glowing balls of gas that generate energy by converting hydrogen into helium near their
centers. Our sun is an average size star situated near the edge of the Milky Way galaxy.
At an average distance from the sun of nearly 150 million kilometers (km) or 93 million miles (mi), the
earth intercepts only a very small fraction of the suns total energy output. However, it is this radiant
energy (or radiation)* that drives the atmosphere into the patterns of everyday wind and weather and
allows the earth to maintain an average surface temperature of about 15°C (59°F).
The earths atmosphere is a thin, gaseous envelope comprised mostly of nitrogen and oxygen, with
small amounts of other gases, such as water vapor and carbon dioxide. Nestled in the atmosphere are
clouds of liquid water and ice crystals. Although our atmosphere extends upward for many hundreds of
kilometers, almost 99 percent of the atmosphere lies within a mere 30 km (19 mi) of the earths surface.
Atmosphere shields the surface and its inhabitants from the suns dangerous ultraviolet radiant energy,
as well as from the onslaught of material from interplanetary space. There is no definite upper limit to
the atmosphere; rather, it becomes thinner and thinner, eventually merging with empty space, which
surrounds all the planets.
Notice that nitrogen (N2) occupies about 78 percent and oxygen (O2) about 21 percent of the total
volume of dry air. If all the other gases are removed, these percentages for nitrogen and oxygen hold
fairly constant up to an elevation of about 80 km (50 mi).
*Radiation is energy transferred in the form of waves that have electrical and magnetic properties. The
light that we see is radiation, as is ultraviolet light.
At the surface, there is a balance between destruction (output) and production (input) of these gases.
For example, nitrogen is removed from the atmosphere primarily by biological processes that involve
soil bacteria. In addition, nitrogen is taken from the air by tiny ocean-dwelling plankton that convert it
into nutrients that help fortify the oceans food chain. It is returned to the atmosphere mainly through
the decaying of plant and animal matter. Oxygen, on the other hand, is removed from the atmosphere
when organic matter decays and when oxygen combines with other substances, producing oxides. It is
also taken from the atmosphere during breathing, as the lungs take in oxygen and release carbon
dioxide (CO2). The addition of oxygen to the atmosphere occurs during photosynthesis, as plants, in the
presence of sunlight, combine carbon dioxide and water to produce sugar and oxygen.
The concentration of the invisible gas water vapor (H2O), however, varies greatly from place to place,
and from time to time. The falling rain and snow is called precipitation.
In the lower atmosphere, water is everywhere. It is the only substance that exists as a gas, a liquid, and
a solid at those temperatures and pressures normally found near the earth’s surface.
Water vapor is an extremely important gas in our atmosphere due to precipitation and also it releases
large amounts of heat called latent heat. Latent heat is an important source of atmospheric energy,
especially for storms, such as thunderstorms and hurricanes. Moreover, water vapor is a potent
greenhouse gas because it strongly absorbs a portion of the earths outgoing radiant energy
Carbon dioxide (CO2), a natural component of the atmosphere, occupies a small (but important)
percent of a volume of air, about 0.038 percent. Carbon dioxide enters the atmosphere mainly from the
decay of vegetation, but it also comes from volcanic eruptions, the exhalations of animal life, from the
burning of fossil fuels (such as coal, oil, and natural gas), and from deforestation. The removal of CO2
Unlock document

This preview shows pages 1-3 of the document.
Unlock all 9 pages and 3 million more documents.

Already have an account? Log in
from the atmosphere takes place during photosynthesis, as plants consume CO2 to produce green
matter. The CO2 is then stored in roots, branches, and leaves. The oceans act as a huge reservoir
for CO2, as phytoplankton (tiny drifting plants) in surface water fix CO2 into organic tissues. Carbon
dioxide that dissolves directly into surface water mixes downward and circulates through greater
depths. Estimates are that the oceans hold more than 50 times the total atmospheric CO2 content.
This increase means that CO2 is entering the atmosphere at a greater rate than it is being removed. The
increase appears to be due mainly to the burning of fossil fuels; however, deforestation also plays a role
as cut timber, burned or left to rot, releases CO2 directly into the air.
Carbon dioxide is another important greenhouse gas because, like water vapor, it traps a portion of the
earths outgoing energy. Other green house gases include methane (CH4), nitrous oxide (N2O), and
chlorofl uorocarbons (CFCs).*
*Because these gases (including CO2) occupy only a small fraction of a percent in a volume of air near the surface, they are referred to
collectively as trace gases.
At the surface, ozone (O3) is the primary ingredient of photochemical smog, the majority of
atmospheric ozone (about 97 percent) is found in the upper atmosphere in the stratosphere where it
is formed naturally, as oxygen atoms combine with oxygen molecules.
When CFCs enter the stratosphere, ultraviolet rays break them apart, and the CFCs release ozone-
destroying chlorine. Because of this effect, ozone concentration in the stratosphere has been decreasing
over parts of the Northern and Southern Hemispheres. The reduction in stratospheric ozone levels over
springtime Antarctica has plummeted at such an alarming rate that during September and October,
there is an ozone hole over the region.
Collectively, these tiny solid or liquid suspended particles of various composition are called aerosols.
The earths first atmosphere (some 4.6 billion years ago) was most likely hydrogen and helium the
two most abundant gases found in the universe as well as hydrogen compounds, such as methane
(CH4) and ammonia (NH3). A second, more dense atmosphere, however, gradually enveloped the earth
as gases from molten rock within its hot interior escaped through volcanoes and steam vents. We
assume that volcanoes spewed out the same gases then as they do today: mostly water vapor (about 80
percent), carbon dioxide (about 10 percent), and up to a few percent nitrogen. These gases (mostly
water vapor and carbon dioxide) probably created the earths second atmosphere. As millions of years
passed, the constant outpouring of gases from the hot interior known as outgassing provided a
rich supply of water vapor, which formed into clouds. Rain fell upon the earth for many thousands of
years, forming the rivers, lakes, and oceans of the world.
Unlock document

This preview shows pages 1-3 of the document.
Unlock all 9 pages and 3 million more documents.

Already have an account? Log in
It appears that oxygen (O2), the second most abundant gas in todays atmosphere, probably began an
extremely slow increase in concentration as energetic rays from the sun split water vapor (H2O) into
hydrogen and oxygen during a process called photodissociation. The hydrogen, being lighter, probably
rose and escaped into space, while the oxygen remained in the atmosphere.
The volume of an average size breath ofair is about a liter.* Near sea level, there are roughly ten thousand million million
million (1022)† air molecules in a liter. So, 1 breath of air =1022 molecules. There are as many molecules in a single breath
as there are breaths in the atmosphere.
Ozone (O3) in the stratosphere protects life from harmful ultraviolet (UV) radiation. At the surface, ozone is the
main ingredient of photochemical smog.
The majority of water on our planet is believed to have come from its hot interior through outgassing.
A vertical profile of the atmosphere reveals that it can be divided into a series of layers. Each layer may
be defined in a number of ways: by the manner in which the air temperature varies through it, by the
gases that comprise it, or even by its electrical properties. At any rate, before we examine these various
atmospheric layers, we need to look at the vertical profile of two important variables: air pressure and air
Our atmosphere is crowded close to the earth’s surface, air molecules are held near the earth by gravity.
Air above squeezes (compresses) air molecules closer together, which causes their number in a given
volume to increase. Weight is the force acting on an object due to gravity. Weight is defined as the mass
of an object times the acceleration of gravity; Weight =mass x gravity.
An object’s mass is the quantity of matter in the object. The mass of air in a rigid container is the same
everywhere in the universe. However, if you were to instantly travel to the moon, where the acceleration
of gravity is much less than that of earth, the mass of air in the container would be the same, but its
weight would decrease.
Near sea level, air density is about 1.2 kilograms per cubic meter.
The density of air (or any substance) is determined by the masses of atoms and molecules and the amount
of space between them. In other words, density tells us how much matter is in a given space (that is,
volume). We can express density in a variety of ways. The molecular density of air is the number of
molecules in a given volume. Most commonly, however, density is given as the mass of air in a given
volume; thus Density= mass volume.
Because there are appreciably more molecules within the same size volume of air near the earth’s surface
than at higher levels, air density is greatest at the surface and decreases as we move up into the
Air near the surface is compressed; air density normally decreases rapidly at first, then more slowly as we
move farther away from the surface. Air molecules are in constant motion. Pressure= force/area.
hectopascal (hPa) is gradually replacing the millibar as the preferred unit of pressure on surface charts. At
sea level, the standard value for atmospheric pressure is 1013.25 mb =1013.25 hPa = 29.92 in. Hg.
The weight of the air molecules acts as a force upon the earth. The amount of force exerted over
an area of surface is called atmospheric pressure or, simply, air pressure
As we climb in elevation, fewer air molecules are above us; hence, atmospheric pressure always
decreases with increasing height.
Like air density, air pressure decreases rapidly at first, then more slowly at higher levels.
Unlock document

This preview shows pages 1-3 of the document.
Unlock all 9 pages and 3 million more documents.

Already have an account? Log in

Get access

$10 USD/m
Billed $120 USD annually
Homework Help
Class Notes
Textbook Notes
40 Verified Answers
Study Guides
1 Booster Class
$8 USD/m
Billed $96 USD annually
Homework Help
Class Notes
Textbook Notes
30 Verified Answers
Study Guides
1 Booster Class