Study Guides (248,168)
United States (123,294)
Boston College (3,492)
Economics (366)
ECON 1151 (14)
All (14)

# COMPLETE Statistics Notes - Part 5 (got 4.0 in the course)

3 Pages
55 Views

School
Department
Economics
Course
ECON 1151
Professor
All Professors
Semester
Spring

Description
Final—Discrete & Continuous Random Variables Keely Henesey Continuous Random Variables Discrete Random Variables b Expected Value ∑ xP(x) E X ]=∫af (x)dx x b 2 E (X−μ) 2= ∫x−μ) f (x)dx ∑ (x−μ) P(x)= ∑ (x−μ)xP(x) a x x Variance b 2 2 E [X2]−μ = ∫ f (x)dx−μ 2 ∑ x P x – μ a x Standard Deviation σ= σ√ 2 b Expected Value of Functions  E [(X)=]g∫x)f (x)dx ∑ g(x)P(x) of Random Variables a x μ =E [a+bX ]=a+bμ Y X 2 2 2 Let  Y=a+bX ] σ YVar a+bX =b σ X 2 σ Y ∣b∣σX= √ Y Let  b=0 ]  in  E a =a W=a+bX ] Var(a)=0 Thus:[W=a ] Let  a=0 ]  in  E bX ]=bμ X W=a+bX ] 2 2 Thus:[W=bX ] Var bX =b σ x Let  [=−μ /X X]  and  X−μ μ [=1/σ ]  in  E X = X − 1 μX=0 X [ ]σX σX σX Z=a+bX ] X−μ X−μ X 1 2 Thus: Z= X Var( )σ = σ 2σ X1 [ σ X ] X X Jointly Distributed Discrete Random Variables P x, y) P(y∣x)= P(x) Conditional Probability  Distribution P(x∣y)= P(x, y) P(y) Final—Discrete & Continuous Random Variables Keely Henesey μY∨X=E [Y∨X ]=∑ (y∨x)P(y ∣x) Conditional Mean y 2 2 2 Conditional Variance σY∨X =E [(μ Y∨X )∨X =] ∑ ((y−μ Y∨X)∣x)P(y ∣x) y Independent If… P(y∣x)=P(y) P(x∣y)=P(x) Jointly Distr
More Less

Related notes for ECON 1151
Me

OR

Join OneClass

Access over 10 million pages of study
documents for 1.3 million courses.

Join to view

OR

By registering, I agree to the Terms and Privacy Policies
Just a few more details

So we can recommend you notes for your school.